首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aromatic side chains on amino acids influence the fragmentations of cationic complexes of doubly charged metal ions and singly deprotonated peptides. The metal ion interacts with an aromatic side chain and binds to adjacent amide nitrogens. When fragmentation occurs, this bonding leads to the formation of abundant metal-containing a-type ions by reactions that occur at the sites of amino acids that contain the aromatic side chain. Furthermore, formation of metal-containing immonium ions of the amino acids that contain the aromatic side chain also are formed. The abundant a-type ions may be useful in interpretation strategies in which it is necessary to locate in a peptide the position of an amino acid that bears an aromatic side chain.  相似文献   

2.
Oxidative modifications to amino acid side chains can change the dissociation pathways of peptide ions, although these variations are most commonly observed when cysteine and methionine residues are oxidized. In this work we describe the very noticeable effect that oxidation of histidine residues can have on the dissociation patterns of peptide ions containing this residue. A common product ion spectral feature of doubly charged tryptic peptides is enhanced cleavage at the C-terminal side of histidine residues. This preferential cleavage arises as a result of the unique acid/base character of the imidazole side chain that initiates cleavage of a proximal peptide bond for ions in which the number of protons does not exceed the number of basic residues. We demonstrate here that this enhanced cleavage is eliminated when histidine is oxidized to 2-oxo-histidine because the proton affinity and nucleophilicity of the imidazole side chain are lowered. Furthermore, we find that oxidation of histidine to 2-oxo-histidine can cause the misassignment of oxidized residues when more than one oxidized isomer is simultaneously subjected to tandem mass spectrometry (MS/MS). These spectral misinterpretations can usually be avoided by using multiple stages of MS/MS (MS(n)) or by specially optimized liquid chromatographic separation conditions. When these approaches are not accessible or do not work, N-terminal derivatization with sulfobenzoic acid avoids the problem of mistakenly assigning oxidized residues.  相似文献   

3.
Protected amino acids can be prepared from substrates in which a diazo ester is aryl-tethered to an allylic amine, by catalytic intramolecular ammonium ylide generation and [2,3] rearrangement. When the aryl tether is sufficiently electron-deficient, direct coupling of the rearrangement product with a hindered amino acid ester to give a dipeptide is possible, and ammonium ylide generation, rearrangement and peptide coupling can be accomplished in a one-pot fashion.  相似文献   

4.
Nomura A  Sugiura Y 《Inorganic chemistry》2002,41(14):3693-3698
Little is known about the contribution of individual zinc-ligating amino acid residues for coupling between zinc binding and protein folding in zinc finger domains. To understand such roles of each zinc ligand, four zinc finger mutant peptides corresponding to the second zinc finger domain of Sp1 were synthesized. In the mutant peptides, glycine was substituted for one of four zinc ligands. Their metal binding and folding properties were spectroscopically characterized and compared to those of the native zinc finger peptide. In particular, the electronic charge-transfer and d-d bands of the Co(II)-substituted peptide complexes were used to examine the metal coordination number and geometry. Fluorescence emission studies revealed that the mutant peptides are capable of binding zinc despite removing one ligand. Circular dichroism results clearly showed the induction of an alpha-helix by zinc binding. In addition, the structures of certain mutant zinc finger peptides were simulated by molecular dynamics calculation. The information indicates that His23 and the hydrophobic core formed between the alpha-helix and the beta-sheet play an essential role in alpha-helix induction. This report demonstrates that each ligand does not contribute equally to alpha-helix formation and coordination geometry in the zinc finger peptide.  相似文献   

5.
Ketomethylene isosteric replacements for peptide bonds were generated through a zinc carbenoid-mediated chain extension reaction in which a variety of amino acid-derived β-keto esters are converted to γ-keto esters in a single step. The reaction tolerates a variety of protecting groups and amino acid side chains with no epimerization of the amino acid stereocenter.  相似文献   

6.
Photoexcitation (using 157 nm vacuum ultraviolet radiation) of proton-bound peptide complexes leads to water elimination and the formation of longer amino acid chains. Thus, it appears that proton-bound dimers are long-lived intermediates along the pathway to peptide formation. Product specificity can be controlled by selection of specific complexes and the incorporation of blocking groups at the N- or C-termini. The product peptide sequences are confirmed using collision-induced dissociation.  相似文献   

7.
By using the NEXT-A reaction, we introduced a non-natural amino acid at the N-terminus of a peptide/protein that contained a cysteine unit. The side chain of the introduced amino acid spontaneously reacted with the cysteine to afford a cyclic peptide/protein.  相似文献   

8.
Preliminary studies and synthesis development for the preparation of a bicyclic homodetic peptide library have been carried out using orthogonal protection schemes. The best results have been obtained using two Fmoc/tBu-based strategies, in which the first cycle is carried out in the solid phase through side chain functional groups previously protected with Aloc/Al groups. The second cycle is performed either in the solid phase, which requires side chain anchoring of a trifunctional amino acid and Dmb protection for the C-terminus carboxyl group, or in solution, which requires the use of highly labile resins, such as the 2-chlorotrityl (Barlos) resin. Only when the cycles are formed in a ziplike manner, that is, first the small cycle and then the larger ring, is the desired final product obtained.  相似文献   

9.
In one of the peptide condensation methods termed thioester method, an amino protecting group is required in the lysine side chain. In this study, to investigate the efficiency of the pyruvoyl group as an amino protecting group, we synthesized Nα-fluorenylmethoxycarbonyl (Fmoc)-Nε-pyruvoyl-lysine and introduced it into peptides and glycopeptides by the ordinary Fmoc-based solid phase peptide synthesis. The pyruvoyl peptide could be condensed with a peptide thioester by the thioester method, and this protecting group was easily removed by o-phenylenediamine treatment without significant side reactions.  相似文献   

10.
A 10-ns molecular dynamics study of the solvation of a hydrophobic transmembrane helical peptide in dimethyl sulfoxide (DMSO) is presented. The objective is to analyze how this aprotic polar solvent is able to solvate three groups of amino acid residues (i.e., polar, apolar, and charged) that are located in a stable helical region of a transmembrane peptide. The 25-residue peptide (sMTM7) used mimics the cytoplasmic proton hemichannel domain of the seventh transmembrane segment (TM7) from subunit a of H(+)-V-ATPase from Saccharomyces cerevisiae. The three-dimensional structure of peptide sMTM7 in DMSO has been previously solved by NMR spectroscopy. The radial and spatial distributions of the DMSO molecules surrounding the peptide as well as the number of hydrogen bonds between DMSO and the side chains of the amino acid residues involved are extracted from the molecular dynamics simulations. Analysis of the molecular dynamics trajectories shows that the amino acid side chains are fully embedded in DMSO. Polar and positively charged amino acid side chains have dipole-dipole interactions with the oxygen atom of DMSO and form hydrogen bonds. Apolar residues become solvated by DMSO through the formation of a hydrophobic pocket in which the methyl groups of DMSO are pointing toward the hydrophobic side chains of the residues involved. The dual solvation properties of DMSO cause it to be a good membrane-mimicking solvent for transmembrane peptides that do not unfold due to the presence of DMSO.  相似文献   

11.
The complexation between an 18-residue zinc finger peptide of CCHC type (CCHC=Cys-X2-Cys-X4-His-X4-Cys, X=variable amino acid) from the gag protein p55 of human immunodeficiency virus type 1 (HIV-1) and various transition metal ions was studied by means of circular dichroism spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). A correlation between the complexation behavior in solution and in MALDI-MS could be established. It was shown that MALDI-MS is a fast method suitable for studying metal binding properties of zinc finger complexes.  相似文献   

12.
The enantiomer discrimination of peptides by electrospray ionization tandem mass spectrometry is described. A cinchona alkaloid derivative, tert-butylcarbamoylquinine, is used as chiral selector. The chiral selector forms diastereomeric complexes with the peptide enantiomers in the liquid phase (methanolic solution), which are then transferred to the gas phase, where their dissociation behaviour is studied in an ion-trap mass spectrometer. Different degrees of dissociation of the diastereomeric complexes allow for the discrimination of the peptide enantiomers. The influence of the peptide sequence on enantiomer discrimination is discussed and molecular recognition information is derived by comparing the results obtained for related peptides. For dipeptides, small amino acid residues at the N-terminus and bulky side chains at the C-terminus were found to enhance chiral recognition, while for tripeptides the effects were rather irregular.  相似文献   

13.
A series of zinc complexes with dipeptide ligands of the type Dpg-Xaa was synthesized, where Dpg is dipicolylglycine and Xaa is phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp), 2-naphthylalanine (Nal), or glycine (Gly). It was shown that aromatic interactions promote the unusual coordination of an anionic peptide backbone nitrogen atom to zinc. This binding mode was, for the first time, characterized by X-ray structure analyses of the electrically neutral complexes [(Dpg-Phe)(-H)Zn], [(Dpg-Tyr)(-H)Zn], [(Dpg-Trp)(-H)Zn], and [(Dpg-Nal)(-H)Zn]. The pKa values for amide nitrogen deprotonation were determined by 1H NMR titrations {[(Dpg-Phe)Zn], 7.17; [(Dpg-Tyr)Zn], 6.85; [(Dpg-Trp)Zn], 6.85; [(Dpg-Nal)Zn], 6.64; [(Dpg-Gly)Zn], 8.54}. It was calculated that aromatic interactions contribute ca. -8 to -11 kJ/mol of stabilizing free enthalpy changes in the derivatives with aromatic amino acid side chains. These are the first quantitative data obtained for crystallographically characterized metal complexes. A comparison with the literature shows that it is difficult to distinguish between pi-cation attraction and pi-pi stacking. However, it is evident that modification of small peptides with synthetic pyridine ligands enhances their ability to stabilize secondary structures by noncovalent interactions. This is an important consideration for the design of biomimetic metallopeptides.  相似文献   

14.
The results of previous works that have claimed to detect cyclodextrin inclusion complexes via the “soft” ionization technique of electrospray ionization mass spectrometry are revisited. A more extensive study of cyclodextrin mixtures with amino acids and small peptides demonstrates that amino acid and peptide “complexes” are detected by electrospray mass spectrometry regardless of the presence (or not) of an aromatic moiety on the side chain. Amino acids that may be least likely to form hydrophobic inclusion complexes with cyclodextrin in solution generally show the most intense complex ions. The data suggest that these “complexes” are, in all likelihood, electrostatic adducts formed during the electrospray process. Systematic controls are suggested to ensure that “false positives” do not negate many of the claims concerning the detection of solution-derived noncovalent compounds.  相似文献   

15.
Peptides with an N-alkoxy or N-aryloxy amino acid at their N-terminus were synthesized and successfully ligated with a peptide thioester by silver ion activation under a slightly acidic condition without requiring protection of the side chain amino groups. The N-methoxy group was easily cleaved by the SmI2 reduction in CH3OH aq. to obtain the desired peptide with a native peptide bond. This method was successfully applied to the synthesis of the human atrial natriuretic peptide showing the efficiency of the novel ligation.  相似文献   

16.
《Chemistry & biology》1996,3(11):913-921
Background: A structurally diverse group of bioactive peptides is synthesized by peptide synthetases which act as templates for a growing peptide chain, attached to the enzyme via a thloester bond. The protein templates are composed of distinctive substrate-activating modules, whose order dictates the primary structure of the corresponding peptide product. Each module contains defined domains that catalyze adenylation, thioester and peptide bond formation, as well as substrate modifications. To show that a putative thiolation domain (PCP) is involved in covalent binding and transfer of amino aryl residues during non-ribosomal peptide synthesis, we have cloned and biochemically characterized that region of tyrocidine synthetase 1, TycA.Results: The 327-bp gene fragment encoding PCP was cloned using its homology to the genes for the acyl carrier proteins of fatty acid and polyketide biosynthesis. The protein was expressed as a His6, fusion protein, and purified in a single step by affinity chromatography. Incorporation of β-[3H]alanine, a precursor of coenzyme A, demonstrated the modification of PCP with the cofactor 4′-phosphopantetheine. When an adenylation domain is present to supply the amino adenylate moiety, PCP can be acylated in vitro.Conclusions: PCP can bind covalently to the cofactor phosphopantetheine and can subsequently be acylated, strongly supporting the multiple carrier model of non-ribosomal peptide synthesis. The adenylation and thiolation domains can each act as independent multifunctional enzymes, further confirming the modular structure of peptide synthees, and can also perform sequential steps in trans, as do multienzyme complexes.  相似文献   

17.
Chelated amino acid ester enolates are excellent nucleophiles for palladium-catalyzed allylic alkylations. These enolates react rapidly at -78 degrees C and in general without isomerization of pi-allyl palladium complexes. Therefore, they are good candidates for mechanistic studies and regioselective reactions. Terminal pi-allyl palladium complexes are preferentially attacked at the least hindered position giving rise to linear products, as illustrated with several (E)-configured allylic substrates. Under isomerization free conditions the branched products are formed preferentially from the corresponding (Z)-allyl substrates. An interesting behavior is observed in the reaction of secondary allylic substrates. Aryl-substituted substrates show a significant memory effect which can be explained by an asymmetric pi-allyl complex. For alkyl-substituted substrates a strong dependence of the regioselectivity on the leaving group is observed, which can be explained by different conformations in the ionization step. Under isomerization free conditions the product ratio gives important information about this step.  相似文献   

18.
Using the lanthanide ion praseodymium, Pr(III), metallated ion formation and electron transfer dissociation (ETD) were studied for 25 biological and model acidic peptides. For chain lengths of seven or more residues, even highly acidic peptides that can be difficult to protonate by electrospray ionization will metallate and undergo abundant ETD fragmentation. Peptides composed of predominantly acidic residues form only the deprotonated ion, [M + Pr ‐ H]2+; this ion yields near complete ETD sequence coverage for larger peptides. Peptides with a mixture of acidic and neutral residues generate [M + Pr]3+, which cleaves between every residue for many peptides. Acidic peptides that contain at least one residue with a basic side chain also produce the protonated ion, [M + Pr + H]4+; this ion undergoes the most extensive sequence coverage by ETD. Primarily metallated and non‐metallated c‐ and z‐ions form for all peptides investigated. Metal adducted product ions are only present when at least half of the peptide sequence can be incorporated into the ion; this suggests that the metal ion simultaneously attaches to more than one acidic site. The only site consistently lacking dissociation is at the N‐terminal side of a proline residue. Increasing peptide chain length generates more backbone cleavage for metal‐peptide complexes with the same charge state. For acidic peptides with the same length, increasing the precursor ion charge state from 2+ to 3+ also leads to more cleavage. The results of this study indicate that highly acidic peptides can be sequenced by ETD of complexes formed with Pr(III). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Physiological processes are regulated to a large extent by physical and chemical interactions between polypeptides. Although many small molecules have been discovered that can modulate such interactions and may be useful as drugs, the design of these agents purely from the knowledge of the details of a given protein-protein interaction, or through screening, remains difficult. Therefore, the peptidomimetic process, which aims at using peptides derived from either polypeptide binding partner directly, or after modification to improve affinity and physicochemical properties, continues to be attractive. The vast majority of naturally occurring polypeptides are composed of L-amino acids. Because natural proteins need to be metabolised, L-amino acid polypeptides are very prone to proteolytic degradation, a property that severely limits their therapeutic application. The proteolytic machinery is not well equipped to deal with D-amino acid polypeptides, however, and it is this finding above all else that has spurned research into stereochemical and directional manipulation of peptide chains. The expectation has been that systematic inversion of the stereochemistry at the peptide backbone alpha-carbon atoms, if accompanied by chain reversal, should yield proteolytically stable retro-inverso peptide isomers, whose side chain topology, in the extended conformation, corresponds closely to that of a native sequence, and whose biological activity emulates that of a parent polypeptide. The actual structural implications of modifying amino acid stereochemistry and peptide bond direction are reviewed critically here and the reasons for the lack of general success with this strategy are discussed. The application of polypeptides is particularly pertinent to synthetic vaccine design. Interestingly, the retro-inverso strategy has been more successful for immunological applications than elsewhere; recent finding are collated in this review. Partial rather than global retro-inversion holds much promise since the loss of crucial backbone hydrogen-bonding through peptide bond reversal can be avoided, while still permitting stabilisation of selected hydrolysis-prone peptide bonds. Generically applicable synthetic methods for such partially modified retro-inverso peptides are not as yet available; progress towards this goal is also summarised.  相似文献   

20.
The dissociation of the amide (peptide) bond in protonated peptides, [M + H](+), is discussed in terms of the structures and energetics of the resulting N-terminal b(n) and C-terminal y(n) sequence ions. The combined data provide strong evidence that dissociation proceeds with no reverse barriers through interconverting proton-bound complexes between the segments emerging upon cleavage of the protonated peptide bond. These complexes contain the C-terminal part as a smaller linear peptide (amino acid if one residue) and the N-terminal part either as an oxazolone or a cyclic peptide (cyclic amide if one residue). Owing to the higher thermodynamic stability but substantially lower gas-phase basicity of cyclic peptides vs isomeric oxazolones, the N-terminus is cleaved as a protonated oxazolone when ionic (b(n) series) but as a cyclic peptide when neutral (accompanying the C-terminal y(n) series). It is demonstrated that free energy correlations can be used to derive thermochemical data about sequence ions. In this context, the dependence of the logarithm of the abundance ratio log[y(1)/b(2)], from protonated GGX (G, glycine; X, varying amino acid) on the gas-phase basicity of X is used to obtain a first experimental estimate of the gas-phase basicity of the simplest b-type oxazolone, viz. 2-aminomethyl-5-oxazolone (b(2) ion with two glycyl residues).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号