首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts.
Figure
3D representation of Ion mobility of metabolically engineered soybean seeds  相似文献   

2.
Currently, there is no cure for Alzheimer’s disease and early diagnosis is very difficult, since no biomarkers have been established with the necessary reliability and specificity. For the discovery of new biomarkers, the application of omics is emerging, especially metabolomics based on the use of mass spectrometry. In this work, an analytical approach based on direct infusion electrospray mass spectrometry was applied for the first time to blood serum samples in order to elucidate discriminant metabolites. Complementary methodologies of extraction and mass spectrometry analysis were employed for comprehensive metabolic fingerprinting. Finally, the application of multivariate statistical tools allowed us to discriminate Alzheimer patients and healthy controls, and identify some compounds as potential markers of disease. This approach provided a global vision of disease, given that some important metabolic pathways could be studied, such as membrane destabilization processes, oxidative stress, hypometabolism, or neurotransmission alterations. Most remarkable results are the high levels of phospholipids containing saturated fatty acids, respectively, polyunsaturated ones and the high concentration of whole free fatty acids in Alzheimer’s serum samples. Thus, these results represent an interesting approximation to understand the pathogenesis of disease and the identification of potential biomarkers. Graphical Abstract
?  相似文献   

3.
4.
5.

Background

Carnitine Palmitoyltransferase-1c (CPT1c) is a neuron specific homologue of the carnitine acyltransferase family of enzymes. CPT1 isoenzymes transfer long chain acyl groups to carnitine. This constitutes a rate setting step for mitochondrial fatty acid beta-oxidation by facilitating the initial step in acyl transfer to the mitochondrial matrix. In general, neurons do not heavily utilize fatty acids for bioenergetic needs and definitive enzymatic activity has been unable to be demonstrated for CPT1c. Although there are studies suggesting an enzymatic role of CPT1c, its role in neurochemistry remains elusive.

Results

In order to better understand how CPT1c functions in neural metabolism, we performed unbiased metabolomic profiling on wild-type (WT) and CPT1c knockout (KO) mouse brains. Consistent with the notion that CPT1c is not involved in fatty acid beta-oxidation, there were no changes in metabolites associated with fatty acid oxidation. Endocannabinoids were suppressed in the CPT1c KO, which may explain the suppression of food intake seen in CPT1c KO mice. Although products of beta-oxidation were unchanged, small changes in carnitine and carnitine metabolites were observed. Finally, we observed changes in redox homeostasis including a greater than 2-fold increase in oxidized glutathione. This indicates that CPT1c may play a role in neural oxidative metabolism.

Conclusions

Steady-state metabolomic analysis of CPT1c WT and KO mouse brains identified a small number of metabolites that differed between CPT1c WT and KO mice. The subtle changes in a broad range of metabolites in vivo indicate that CPT1c does not play a significant or required role in fatty acid oxidation; however, it could play an alternative role in neuronal oxidative metabolism.
  相似文献   

6.
As part of a collaboration with the National Institutes of Health’s Office of Dietary Supplements and the Food and Drug Administration’s Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed Standard Reference Material (SRM) 3274 Botanical Oils Containing Omega-3 and Omega-6 Fatty Acids and SRM 3275 Omega-3 and Omega-6 Fatty Acids in Fish Oil. SRM 3274 consists of one ampoule of each of four seed oils (3274-1 Borage (Borago officinalis), 3274-2 Evening Primrose (Oenothera biennis), 3274-3 Flax (Linium usitatissimum), and 3274-4 Perilla (Perilla frutescens)), and SRM 3275 consists of two ampoules of each of three fish oils (3275-1 a concentrate high in docosahexaenoic acid, 3275-2 an anchovy oil high in docosahexaenoic acid and eicosapentaenoic acid, and 3275-3 a concentrate containing 60 % long-chain omega-3 fatty acids). Each oil has certified and reference mass fraction values for up to 20 fatty acids. The fatty acid mass fraction values are based on results from analyses using gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS). These SRMs will complement other reference materials currently available with mass fractions for similar analytes and are part of a series of SRMs being developed for dietary supplements.
Figure
Components of SRM 3274 Botanical Oils Containing Omega-3 and Omega-6 Fatty Acids  相似文献   

7.
Fingerprint analysis using capillary liquid chromatography (CLC) has been developed for discrimination of Zingiber montanum (ZM) from related species, for example Z. americans (ZA) and Z. zerumbet (ZZ). By comparing the fingerprint chromatograms of ZM, ZA, and ZZ we could identify ZM samples and discriminate them from ZA and ZZ by using their marker peaks. We also combined CLC fingerprint with multivariate analysis, including principal-component analysis (PCA) and canonical variate analysis (CVA); all three species were discriminated successfully. This result indicates that CLC fingerprint analysis in combination with PCA and CVA can be used for discrimination of ZM samples from samples of related species.
Figure
?  相似文献   

8.
Six secondary metabolites from the methanolic extract of Sweetia panamensis (Fabaceae) bark were isolated and characterised. Along with the pyrones desmethylangonine β-d-O-glucopyranoside and desmethylangonine β-d-O-glucopyranosyl-(1→6)-O-β-d-glucopyranoside, already reported in this species, 5-O-caffeoylquinic acid (chlorogenic acid), 4-O-caffeoylquinic acid, 3-O-caffeoylquinic acid and the isoflavonoid 5-O-methylgenistein 7-O-β-d-glucopyranoside were isolated for the first time from S. panamensis. Additionally, an LC-ESI-MS qualitative analysis was performed and an ultra performance liquid chromatography (UPLC) method was developed and validated for the determination of these compounds. The UPLC method was applied to the quantitative analysis of plant samples. Pyrones and caffeoylquinic acids resulted to be the main compounds in the extract; in particular desmethylangonine β-d-O-glucopyranosyl-(1→6)-O-β-d-glucopyranoside was the most abundant compound.  相似文献   

9.
Macrophages are phagocytic cells which are involved in the non-specific immune defense. Lipid uptake and storage behavior of macrophages also play a key role in the development of atherosclerotic lesions within walls of blood vessels. The allocation of exogenous lipids such as fatty acids in the blood stream dictates the accumulation and quantity of lipids within macrophages. In case of an overexposure, macrophages transform into foam cells because of the large amount of lipid droplets in the cytoplasm. Raman micro-spectroscopy is a powerful tool for studying single cells due to the combination of microscopic imaging with spectral information. With a spatial resolution restricted by the diffraction limit, it is possible to visualize lipid droplets within macrophages. With stable isotopic labeling of fatty acids with deuterium, the uptake and storage of exogenously provided fatty acids can be investigated. In this study, we present the results of time-dependent Raman spectroscopic imaging of single THP-1 macrophages incubated with deuterated arachidonic acid. The polyunsaturated fatty acid plays an important role in the cellular signaling pathway as being the precursor of icosanoids. We show that arachidonic acid is stored in lipid droplets but foam cell formation is less pronounced as with other fatty acids. The storage efficiency in lipid droplets is lower than in cells incubated with deuterated palmitic acid. We validate our results with gas chromatography and gain information on the relative content of arachidonic acid and its metabolites in treated macrophages. These analyses also provide evidence that significant amounts of the intracellular arachidonic acid is elongated to adrenic acid but is not metabolized any further. The co-supplementation of deuterated arachidonic acid and deuterated palmitic acid leads to a non-homogenous storage pattern in lipid droplets within single cells. Figure a
?  相似文献   

10.
A series of six organotin(IV) carboxylates [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), n-Bu3SnL (5) and [Ph3SnL] (6), where L = 3-(4-cyanophenyl) acrylic acid have been synthesized and characterized by elemental analysis, FT-IR and NMR (1H, 13C). The complex (4) was also analyzed by single crystal X-ray analysis which showed distorted trigonal bipyramidal geometry with polymeric bridging behavior. The complexes 16 were screened for antimicrobial activities and cytotoxicity. The results showed significant activity with few exceptions. The catalytic activity of complexes was assessed in transesterification reaction of Brassica campestris oil (triglycerides) to produce biodiesel (fatty acid methyl esters). The results showed that triorganotin(IV) complexes exhibited good catalytic activity than their di-analogues.  相似文献   

11.
12.
Mycotoxins and selected hazardous alkaloids in the medicinal plants (Panax ginseng, Angelica sinensis, and Withania somnifera) and dietary supplements were determined. Purine alkaloids were found in majority of samples; however, isoquinoline alkaloids were less abundant than indole. The predominant alkaloids appear to be caffeine (purine group), harman (indole group) and berberine (isoquinoline). Examined medicinal plants and dietary supplements were contaminated by mycotoxins (especially ochratoxin A 1.72–5.83 µg kg?1), and many species of mold (e.g. Cladosporium, Eurotium, Aspergillus, Rhizopus, Penicillium). MTT cytotoxicity tests revealed that plant and supplements extracts exhibited medium or high cytotoxicity (only Dong quai—low). Moreover, antioxidant activity, total phenolics content and selected phytochemicals were analyzed by spectrophotometric and chromatographic methods. Quercetin and rutin were predominant flavonols (1.94-9.51 and 2.20–7.28 mg 100 g?1, respectively). Analysis of phenolic acids revealed—gallic acid, as the most abundant, except Panax ginseng, where ferulic acid was prevailing. The results were analyzed by chemometric methods (cluster analysis, ANOVA).  相似文献   

13.
Six new photosensitive and optically active poly(amide-imide)s 8a8f with good inherent viscosities based on dibenzalacetone moiety were synthesized from the direct polycondensation reaction of N-Trimellitylimido-L-amino acids 3a3f with 2,5-bis(4-aminobenzylidene)cyclopentanone 7 by two different methods such as direct polycondensation in a medium consisting of N-methyl-2-pyrrolidone/triphenyl phosphite/calcium chloride/pyridine and direct polycondensation in a tosyl chloride/pyridine (py)/N,N-dimethylformamide system. Diamine 7 was synthesized by using a two-step reaction. At first 2,5-bis(4-nitrobenzylidene)cyclopentanone 6 was prepared from the reaction of two equimolars 4-nitrobenzaldehyde 5 and one equimolar cyclopentanone 4 and dinitro compound 6 was reduced by using Na2S. Also N-trimellitylimido-L-amino acids 3a3f were synthesized by the condensation reaction of trimellitic anhydride 1 with two equimolars of various L-amino acids 2a2f in an acetic acid solution. The polymerization reactions produced a series of photosensitive and optically active poly(amide-imide)s with high yield and good inherent viscosity. The resulted polymers were fully characterized by means of FTIR and 1H-NMR spectroscopy, elemental analyses, inherent viscosity, specific rotation, solubility tests, UV-VIS spectroscopy, differential scanning calorimeter, thermogravimetric analysis, and derivative of thermogravimetric. These macromolecules exhibited maximum UV-VIS absorption at around 395 and 265 nm in a N,N-dimethylformamide solution.  相似文献   

14.
Thed,l-(1a) andmeso-forms (1b) of α,α'-dihydroxy-α,α'-dimethyladipic acid, dilactone (3), diiminodilactone (4), and lactonolactam (5) were obtained by the reaction of acetonylacetone with KCN and HCl. The transformations of1 to the esters2, dilactone3 to la, and diiminodilactone4 to dilactone3 were studied. It was shown that3 can be readily obtained from la by thermolysis, acid catalysis, and DCC action as well as by acid catalyzed cyclization of2a, while dilactone3 can be obtained from1b and2b in negligible yield only under drastic conditions, obviously, due to the partial epimirization of themeso-forms. The mild thermolysis of1b leads totrans-lactonoacid (6), from which the ester7 has been obtained. The effective acid catalyzed cyclization of amides8 and9 to3, lactamoamide12 to5, and amide14 to model lactone13 was found. The NMR spectra of the products were studied, and a1H NMR test was suggested for identification ofd,l- andmeso-forms1 and2. The stereochemistry of monolactones6, 7, 9, 10a, 10b, 11, and dilactone3 was established. The differences in the chemical behavior of α,α'-dihydroxyglutaric and adipic acids were explained by the significant reduction of the non-bonded interactions of the substituents in the corresponding monolactones during the transfer from 1,3- to 1,4-substituted systems.  相似文献   

15.
The quantitative determination of the total free fatty acids (FFAs) is an important analytical task because FFAs exhibit important physiological effects and are also relevant in many other fields, for instance, in food research. Our aim was to investigate whether a commercially available enzymatic test kit developed for the determination of FFAs in human serum is also suitable to determine different physiological and nonphysiological FFAs and to which extent the impact on the sensitivities (i.e., the accuracy by which a given FFA can be determined) differ. It will be shown that the chain length as well as the double bond content has a significant impact on the sensitivity by which a given FFA can be determined. For instance, palmitic acid (16:0) is determined with an approximately 20 times higher sensitivity in comparison to docosahexaenoic acid (22:6n-3). All data were obtained by measuring the concentrations of the FFAs by gas chromatography, and selected FFAs were also determined in a complex matrix of human serum. It is concluded that this kit is not useful if major alterations of the FFA composition of a complex mixture are expected because the individual FFAs are not detected with the same sensitivities: the concentrations of polyunsaturated FFA determined by this kit are wrong. Figure
The used enzymatic kit detects different free fatty acids with significantly different sensitivities: the number of carbon atoms and the number of double bonds massively contribute to these differences  相似文献   

16.
The analysis of the amino acids present in Murchison meteorite and in other carbonaceous chondrites has revealed the presence of 66 different amino acids. Only eight of these 66 amino acids are proteinaceous amino acids used by the present terrestrial biochemistry in protein synthesis, the other 58 amino acids are somewhat “rare” or unusual or even “unknown” for the current terrestrial biochemistry. For this reason in the present work a series of “uncommon” non-proteinaceous amino acids, namely, l-2-aminobutyric acid, R(?)-2-aminobutyric acid, 2-aminoisobutyric acid (or α-aminoisobutyric acid), l-norleucine, l-norvaline, l-β-leucine, l-β-homoalanine, l-β-homoglutamic acid, S(?)-α-methylvaline and dl-3-aminoisobutyric acid were radiolyzed in vacuum at 3.2 MGy a dose equivalent to that emitted in 1.05 × 109 years from the radionuclide decay in the bulk of asteroids or comets. The residual amount of each amino acid under study remained after radiolysis was determined by differential scanning calorimetry in comparison to pristine samples. For optically active amino acids, the residual amount of each amino acid remained after radiolysis was also determined by optical rotatory dispersion spectroscopy and by polarimetry. With these analytical techniques it was possible to measure also the degree of radioracemization undergone by each amino acid after radiolysis. It was found that the non-proteinaceous amino acids in general do not show a higher radiation and radioracemization resistance in comparison to the common 20 proteinaceous amino acids studied previously. The unique exception is represented by α-aminoisobutyric acid which shows an extraordinary resistance to radiolysis since 96.6 % is recovered unchanged after 3.2 MGy. Curiously α-aminoisobutyric acid is the most abundant amino acid found in carbonaceous chondrites. In Murchison meteorite α-aminoisobutyric acid represents more than 20 % of the total 66 amino acids found in this meteorite.  相似文献   

17.
Analysis of large (>10,000 entries) databases consisting of high-resolution tandem mass spectra of peptide dications revealed with high statistical significance (P?<?1?10–3) that peptides with non-identical first two N-terminal amino acids undergo cleavages of the second peptide bond at higher rates than repetitive sequences composed of the same amino acids (i.e., in general AB- and BA- bonds cleave more often than AA- and BB- bonds). This effect seems to depend upon the collisional energy, being stronger at lower energies. The phenomenon is likely to indicate the presence of the diketopiperazine structure for at least some b2 + ions. When consisting of two identical amino acids, these species should form through intermediates that have a symmetric geometry and, thus, must be subject to the Jahn-Teller effect that reduces the stability of such systems.
Figure
?  相似文献   

18.
The electrochemical transformations and antiradical activity of penta- and hexacoordinate antimony(V) complexes I–V containing the tridentate O,N,O-donor ligand, N,N-bis(di-3,5-tert-butyl-2-hydroxyphenyl)amine, are studied. The oxidation of hexacoordinate triarylantimony(V) compounds R3Sb(Cat-NH-Cat) (I–III) leads to the formation of neutral paramagnetic intermediates Ia–IIIa. Two anodic reversible one-electron stages are observed for pentacoordinate complexes R′2Sb(Cat-N-Cat) (IV, V). The possibility of the formation of stable paramagnetic species in electrochemical oxidation is a reason for the antiradical activity of the complexes. The study of the reactions of compounds I–V with the electrogenerated superoxide radical anion, diphenylpicrylhydrazyl radical, peroxy radicals, and hydroperoxides formed by the autooxidation of unsaturated fatty acids (oleic, linoleic) shows that all complexes exhibit a pronounced antiradical activity. The highest effect is observed for compounds I, IV, and V characterized by the prolonged action.  相似文献   

19.
  1. TheF/A-isotherms of homologous cholesteryl esters of fatty acids (n=1–4) show that in the temperature region between 288,15–313,15 K only condensed films exist. Esters withn 5 do not form stable monolayers.
  2. The concentration dependence of compression curves of the four binary systems cholesteryl formiate/stearic acid (1), cholesteryl acetate/stearic acid (2), cholesteryl-n-propionate/stearic acid (3) and cholesteryl-n-butyrate/stearic acid (4) is only slightly different atT=298,15 K. The systems (1) and (2) differ in the region of high concentrations of stearic acid, as indicated in the occurrence of the bendsK 2. Whole the compression curves of mixtures correspond to a condensed film.
  3. The excess areasA E as function of concentrations of the systems (1), (2) and (4) show dilatation in the region of high concentrations of stearic acid and contraction in the region of increasing concentrations of cholesteryl esters.
  相似文献   

20.
Glycosylation is an important posttranslational modification of proteins and plays a crucial role in both cellular functions and secretory pathways. Sialic acids (SAs), a family of nine-carbon-containing acidic monosaccharides, often terminate the glycan structures of cell surface molecules and secreted glycoproteins and perform an important role in many biological processes. Hence, a more profound profiling of the sialylated glycoproteomics may improve our knowledge of this modification and its effects on protein functions. Here, we systematically investigated different strategies to enrich the SA proteins in human plasma using a newly developed technology that utilizes titanium dioxide for sialylated N-glycoproteomics profiling by mass spectrometry. Our results showed that using a combination of a filter-aided sample preparation method, TiO2 chromatography, multiple enzyme digestion, and two-dimensional reversed-phase peptide fractionation led to a more profound profiling of the SA proteome. In total, 982 glycosylation sites in 413 proteins were identified, among which 37.8 % were newly identified, to establish the largest database of sialic acid containing proteins from human plasma.
Figure
Numbers of identified SA glycosites with different strategies  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号