首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Double-scale composite lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films of 360 nm thickness were prepared by a modified composite sol-gel method. PZT films were deposited from both the pure sol and the composite suspension on Pt/Al2O3 substrates by the spin-coating method and were sintered at 650°C. The composite suspension formed after ultrasonic mixing of the PZT nanopowder and PZT sol at the powder/sol mass concentration 0.5 g mL−1. PZT nanopowder (≈ 40–70 nm) was prepared using the conventional sol-gel method and calcination at 500°C. Pure PZT sol was prepared by a modified sol-gel method using a propan-1-ol/propane-1,2-diol mixture as a stabilizing solution. X-ray diffraction (XRD) analysis indicated that the thin films possess a single perovskite phase after their sintering at 650°C. The results of scanning electron microscope (SEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analyses confirmed that the roughness of double-scale composite PZT films (≈ 17 nm) was significantly lower than that of PZT films prepared from pure sol (≈ 40 nm). The composite film consisted of nanosized PZT powder uniformly dispersed in the PZT matrix. In the surface micrograph of the film derived from sol, large round perovskite particles (≈ 100 nm) composed of small spherical individual nanoparticles (≈ 60 nm) were observed. The composite PZT film had a higher crystallinity degree and smoother surface morphology with necklace clusters of nanopowder particles in the sol-gel matrix compared to the pure PZT film. Microstructure of the composite PZT film can be characterized by a bimodal particle size distribution containing spherical perovskite particles from added PZT nanopowder and round perovskite particles from the sol-matrix, (≈ 30–50 nm and ≈ 100–120 nm), respectively. Effect of the PZT film preparation method on the morphology of pure and composite PZT thin films deposited on Pt/Al2O3 substrates was evaluated.  相似文献   

2.
The effects of the residual tensile stress induced during the heat treatment process after sol-gel coating on the piezoelectric properties of PbZrxTi1-xO3 (PZT) films were investigated. PZT films were deposited on platinized silicon substrates using a sol containing polyvinylpyrrolidone (PVP). After the coating process, the films were elastically bent concavely by using a fixture during the annealing process. The substrate was bent by an external force, then the gel film was fired while the substrate bending being kept, and after cooling the external force was removed, which could manipulate the residual stress in films. The piezoelectric displacement was markedly increased due to the development of residual stress.  相似文献   

3.
PZT films with different microstructure and Zr:Ti ratios were fabricated on ITO/glass and platinized silicon wafer substrates by dip-coating. A dense film of 2% porosity and a porous film of 19% porosity were obtained by repetition of thin and thick coatings, respectively. Development of pores during heating the film was examined and heating process factors were investigated. In the film fabricated on ITO/glass substrates, an existence of non-perovskite and low permittivity layer was confirmed by measurement of film thickness dependence of the dielectric constant. Among the films studied, the film with molar composition of Ti:Zr = 5:5 exhibited the largest dielectric constant and apparent piezoelectric coefficient, d 33, though the values were small. Apparent piezoelectric coefficients of d 33 and g 33 of the porous films were larger than those of the dense films.  相似文献   

4.
Preparation of PZT Thick Films by an Interfacial Polymerization Method   总被引:3,自引:0,他引:3  
Pb(Zr0.53Ti0.47)O3 (PZT) films of 10 to 50 m in thickness were prepared by a new sol-gel process using an interfacial polymerization technique. The interfacial polymerization process is that an alkoxide precursor solution is poured on the surface of water in a container to form a gel film at the interface between the two immiscible liquids. The precursor solution was prepared by adding PZT alkoxide solution, PZT powders coated with Pb5Ge3O11 (PG), and a surfactant into hexane solvent. After the polymerization at the interface, the gel films were gently placed on a silicon substrate by draining the water in the container. The gel films containing PZT powders were sintered at 950°C for 10 min to obtain crystallized PZT films. The remanent polarization of a PZT thick film was 33.1 C/cm2. The piezoelectric d 33 constant measured with a Mach-Zehnder interferometer was 225 pm/V and was independent of frequency from 0.2 to 3 kHz.  相似文献   

5.
Lead zirconate titanate (PZT) thin films with a Zr/Ti ratio of 57/43, elaborated by a derived sol–gel process, have been deposited onto bare and RuO2 coated aluminium substrate 16 μm thick. Commercial aluminium foil presents many advantages as ultra light weight (43 g m?2), conformability, conduction, can be easily cut, and is one of the cheapest substrates used for PZT thin films deposition (<0.1$ m-2). XRD measurements have shown a well crystallized PZT in the perovskite structure and ferroelectric behaviour has also been observed. By the use of a RuO2 film 100 nm thick at the PZT/aluminium interface, the coercive field and tunability values have been strongly improved despite an increase of the dielectric losses. The lead excess introduced in the precursor solution has been increased up to 65 % in order to lower the crystallization temperature of the PZT around 560 °C and tunability has been studied as a function of annealing time and temperature.  相似文献   

6.
A new sol-gel system using ethylene glycol was developed for the fabrication of PZT thin films with compositions near the morphotropic phase boundary Pb(Zr0.52Ti0.48)O3. Ethylene glycol was used as both a chelating agent and a solvent to replace the highly toxic methoxyethanol used in previous formulations. Thin films were deposited by spin coating the solutions onto platinized silicon substrates. Films were completely crystallized by about 600°C and contained the ferroelectric perovskite phase. A dielectric constant of about 750–800 at 1 KHz was obtained for thin films of 0.3 µm thickness. The hysteresis measurements revealed a remanent polarization of 15 mC/cm2 with a coercive field of 60 kV/cm.  相似文献   

7.
The photo-induced hydrophilicity of TiO2 films deposited on stainless steel substrates and silicon wafers using two different sol-gel routes has been investigated. The results indicate that crystalline titanium oxide films with excellent hydrophilic properties can be obtained on silicon wafer with both routes. XPS and XRD data reveal that films deposited on stainless steel exhibit crystallization features similar to those of films deposited on silicon wafers, and only differ by their oxidation degree owing to a TiO2 reduction process associated to a diffusion of iron ions during deposition of the acidic sol and/or high temperature post-treatment. Consequently, hydrophilic properties of films deposited on stainless steel are inhibited. The deposition of a SiOx barrier layer at the film/substrate interface allows preventing such a detrimental substrate influence. A low temperature deposition route of the TiO2 film associated to the presence of a barrier layer yields best results in preventing iron contamination of the films.  相似文献   

8.
The effect of roughness on the dewetting behavior of polyethylene thin films on silicon dioxide substrates is presented. Smooth and rough silicon dioxide substrates of 0.3 and 3.2-3.9 nm root-mean-square roughness were prepared by thermal oxidation of silicon wafers and plasma-enhanced chemical vapor deposition on silicon wafers, respectively. Polymer thin films of approximately 80 nm thickness were deposited by spin-coating on these substrates. Subsequent dewetting and crystallization of the polyethylene were observed by hot-stage optical microscopy in reflection mode. During heating, the polymer films melt and dewet on both substrates. Further observations after cooling indicate that, whereas complete dewetting occurs on the smooth substrate surface, partial dewetting occurs for the polymer film on the rough surface. The average thickness of the residual film on the rough surface was determined by ellipsometry to be a few nanometers, and the spatial distribution of the polymer in the cavities of the rough surface could be obtained by X-ray reflectometry. The residual film originates from the impregnation of the porous surface by the polymer fluid, leading to the observed partial dewetting behavior. This new type of partial dewetting should have important practical consequences, as most real surfaces exhibit significant roughness.  相似文献   

9.
Transparent semiconducting thin films of titanium oxide (TiO2) were deposited on glass substrates by the sol–gel method and spin-coating technique. The physical properties of the prepared films were studied as a function of the number of spun-cast layers. The microstructure and surface morphology of the TiO2 films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), with respect to the film thickness. The XRD analysis reveals that the films are polycrystalline with an anatase crystal structure and a preferred grain orientation in the (101) direction. The morphological properties were investigated by AFM, which shows a porous morphology structure for the films. The optical properties of the films were characterized by UV–Visible spectrophotometry, which shows that the films are highly transparent in the visible region and their transparency is slightly influenced by the film thickness, with an average value above 80 %. The dependence of the refractive index (n), extinction coefficient (k), and absorption coefficient (α) of the films on the wavelength was investigated. A shift in the optical band gap energy of the films from 3.75 to 3.54 eV, as a function of the film thickness, has been observed.  相似文献   

10.
Cadmium titanate, CdTiO3, was prepared by the sol–gel technique in bulk and in thin film form. The thermal evolution of the gels and the phase changes were studied by thermo- gravimetric analysis (TGA), X-ray diffractometry (XRD) and Raman and energy-dispersive (EDS) spectroscopies. The morphology of the samples was observed using scanning electron microscopy (SEM). Gels heated to 800 °C gave rise to powders with only the ilmenite-like phase. The orthorhombic perovskite phase is the only crystalline phase observed after a 4 h heat-treatment at 1100 °C. With respect to the conventional preparation method by solid-state reaction, by the sol–gel method it is possible to prepare the ilmenite phase at lower temperatures and the perovskite phase in a shorter time. Clear, homogeneous thin films were obtained by the dip-coating method. The refraction index and the thickness of the films were measured using ellipsometry. The humidity-sensitive electrical properties were measured for thin films deposited on alumina substrates with comb-type gold electrodes, heated to 200 °C and 450 °C. The films heated to 200 °C, which still contained organics, showed a variation of the resistance of six orders of magnitude in the relative humidity (RH) range tested (4–87% RH). The films heated to 450 °C, made of ilmenite-type CdTiO3, were nearly insensitive to RH. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
Titania nanocomposite films were fabricated by spin-coating from sol-gel derived pastes of TiO2 powder in titanium isopropoxide sol. The thin films were characterized for structural, optical and hydrophilic properties and evaluated as electrodes in a photoelectrochemical cell. Addition of TiO2 powder increased film thickness, reduced transmittance, water contact angle and electrochemical impedance, and promoted photocurrent generation. Increasing Triton X-100 surfactant loading in the composite slurry influenced film texture and transmittance, and the resultant films exhibited a lower photocurrent yield but were more hydrophilic to favor charge transfer at the electrode/electrolyte interface. The aggregation of TiO2 particles of different sizes in the composite film facilitates light-scattering and electron transport to enhance quantum efficiency. The addition of Triton X-100 surfactant influences the distribution of scattering centers to increase transparency.  相似文献   

12.
Fabrication of ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thick films on a Pt/Ti/SiO2/Si substrate using powder-mixing sol-gel spin coating and continuous wave CO2 laser annealing technique to treat the specimens with at a relatively low temperature was investigated in the present work. PZT fine powders were prepared by drying and pyrolysis of sol-gel solutions and calcined at temperatures from 400 to 750°C. After fine powder-containing sol-gel solutions were spin-coated on a substrate and pyrolyzed, CO2 laser annealing was carried out to heat treat the specimens. The results show that laser annealing provides an extremely efficient way to crystallize the materials, but an amorphous phase may also form in the case of overheating. Thicker films absorb laser energy more effectively and therefore melt at shorter periods, implying a significant volume effect. A film with thickness of 1 μm shows cracks and rough surface morphology and it was difficult to obtain acceptable electrical properties, indicating importance of controlling interfacial stress and choosing appropriate size of the mixing powders. On the other hand, a thick film of 5 μm annealed at 100 W/cm2 for 15 s exhibits excellent properties (P r = 36.1 μC/cm2, E c = 19.66 kV/cm). Films of 10 μm form a melting zone at the surface and a non-crystallized bottom layer easily at an energy density of 100 W/cm2, showing poor electrical properties. Besides, porosity and electrical properties of thick films can be controlled using appropriate processing parameters, suggesting that CO2 laser annealing of modified sol-gel films is suitable for fabricating films of low dielectric constants and high crystallinity.  相似文献   

13.
In this work the efficiency and physicochemical details of a thin film produced by help of a microwave assisted sol gel technique is compared to different commercial powders (Degussa P25 and Hombikat UV100) deposited on glass substrates. Furthermore, a supercritical produced TiO2 powder (SC 134) was included in the comparison.The prepared TiO2 films were characterized using XRD, XPS, AFM, DSC and DLS. The photocatalytic activity was determined using stearic acid as a model compound. Investigation of the prepared films showed that the Degussa P25 film and the sol–gel film were the most photocatalytic active films. The activity of the films was found to be related to the crystallinity of the TiO2 film and the amount of surface area and surface hydroxyl groups. Based on the XPS investigation of the films before and after UV irradiation it was suggested that the photocatalytic destruction of organic matter on TiO2 films proceeds partly through formation of hydroxyl radicals which are formed from surface hydroxyl groups created by interactions between adsorbed water and vacancies on the TiO2 surface. Furthermore a correlation between the amount of OH groups on the surface of the different TiO2 films and the photocatalytic activity was found.  相似文献   

14.
We present for the first time the elaboration via sol gel route of cerium (1 mol%) doped SrHfO3 powders and films. The sol is elaborated using hafnium and strontium ethoxides as precursors and cerium nitrate as dopant. The structure of powders and films are characterized by convergent methods: Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, Raman spectroscopy and optical measurements conducted by the prism coupling method. The powder crystallises from amorphous to pure SrHfO3 orthorhombic perovskite phase after a 800°C heat treatment. Nevertheless HfO2 monoclinic phase coexists with orthorhombic perovskite phase after a 1000°C heat treatment. The film is amorphous for annealing temperatures lower than 700°C and presents good waveguiding performances. The film heat-treated at 700°C exhibits a refractive index of 1.810 ± 0.001 (λ = 543.5 nm) for a thickness around 375 nm. The attenuation coefficient obtained on the 400°C heat-treated film is α = 4.0 ± 0.5 dB/cm (λ = 632.8 nm). The film starts to crystallize at 750°C into the SrHfO3 orthorhombic phase but HfO2 monoclinic phase is also detected after a heat treatment at 1000°C. The potentiality of sol gel Ce3+:SrHfO3 powders and films for scintillation applications are investigated.  相似文献   

15.
Pb(Zr0.25Ti0.75)O3 (PZT25) thin films were prepared on LaNiO3-coated thermally oxidized silicon substrates by chemical solution deposition method, where LaNiO3 electrodes were also prepared by a chemical solution deposition technique. The dielectric constant and dielectric loss of the PZT25 thin films were 570 and 0.057, respectively. The remanent polarization and coercive field were 20.11 μC/cm2 and 60.7 kV/cm, respectively. The PZT25 thin films on LaNiO3-coated thermally oxidized silicon substrates showed improved fatigue characteristics compared with their counterparts on plantium-coated silicon substrates.  相似文献   

16.
The influence of the uppermost substrate layer on the structural properties of sputtered lithium cobalt oxide (LiCoO2) is discussed in this work. For this purpose, bare, oxidized, and platinum-coated silicon wafers, as well as stainless steel and titanium sheets, were used as substrates. The resulting crystal structure of LiCoO2 deposited on these substrates was analyzed and discussed. The LiCoO2 thin films were deposited by RF magnetron sputtering with different film thicknesses. A subsequent annealing step at 700 °C was performed to induce the crystallinity of LiCoO2. The crystal orientation was determined by X-ray diffraction. The obtained results show a strong dependency of LiCoO2's crystal structure on the surface the film is deposited on. However, the strong influence of the film thickness reported in previous publications could not be observed. If LiCoO2 is deposited on the substrates with a metallic surface, a strong (003) preferential orientation is obtained for a wide range of film thicknesses. In contrast, sputtering of LiCoO2 on bare and on oxidized silicon wafers results in a (101) dominated crystal structure for the different film thicknesses. These experiments show the importance of the characterization of LiCoO2's crystal structure in the intended battery setup.  相似文献   

17.
SiO2-ZrO2 based nanostructured multilayers films have been prepared by sol–gel processing from metallorganic precursors by low temperature inorganic polymerization reactions. Simultaneous gelation of both precursors was realized. Homogeneous and transparent films were obtained at room temperature by dip- and spin-coating on glass and silicon wafer substrates. Samples with successively deposited layers (1–3 layers) and successive thermal treatments have been also studied. Each deposited layer was thermally treated for 1 h at 300°C. The coatings were characterized by XRD, spectroellipsometry (SE), UV-VIS spectroscopy and AFM methods. The influence of substrates, number of coatings and number of thermal treatments on the optical and structural properties of the films was established. The thickness of three deposited SiO2-ZrO2 layers is about 496 nm on glass substrates and 413 nm on the silicon wafer substrate. The films deposited on glass are more porous than those deposited on silicon. The properties of optical waveguide prepared from SiO2-ZrO2 layers on silicon substrates will be discussed.  相似文献   

18.
Luminescent properties of Y3(Al,Ga)5O12:Ce3+ phosphor powder and thin films were obtained. The phosphor powder was used as target material for Pulsed Laser Deposition (PLD) of the thin films in the presence of different background gases. Excitation peaks for the powder were obtained at 439, 349, 225 and 189 nm and emission peaks at 512 and 565 nm. X-ray diffraction indicated that better crystallization took place for films deposited in a 20 mTorr O2 atmosphere. Atomic force microscope revealed an RMS value of 0.7 nm, 2.5 nm and 4.8 nm for the films deposited in vacuum, O2 and Ar atmospheres, respectively. The highest PL intensity was observed for films deposited in the O2 atmosphere. A slight shift in the wavelength of the PL spectra was obtained for the thin films due to a change in the crystal field. The thickness of the films varied from 120 nm to 270 nm with films deposited in vacuum having the thin layer and those in Ar having the thick layer. The stoichiometry of the powder was maintained in the film during the deposition as confirmed by Rutherford backscattering spectroscopy.  相似文献   

19.
Polycrystalline thin films of La2NiO4+δ have been synthesized on yttria stabilized zirconia (YSZ) substrates by dip-coating using a polymeric sol. Crack-free films were obtained after sintering in air at temperatures ranging from 800°C to 1000°C. The microstructure, characterized by SEM, shows the formation of dense polycrystalline films with smooth surface and mean grains size of 140 nm, for films sintered at 1000°C. A correlation between grains size and non-stoichiometry in powders have been made in our processes. The thickness, evaluated for rugosimetry measurements, is thin (80 nm) and is a function of the viscosity of the sol. The higher the thickness, the higher the viscosity. As the non-stoichiometry level is controlled by the oxygen partial pressure, an evolution of non-stoichiometry in thin film has proposed. Then, it is possible by modifying synthesis and processing parameters to prepare thin films with a controlled microstructure (thickness, porosity and non-stoichiometry).  相似文献   

20.
Summary.  We have studied the coercivity of magnetic nanonetworks as a function of thickness, nominal pore diameter, and surface/interface roughness in the thickness range of approximately 2 to 45 nm where a Néel-type domain wall has been theoretically predicted. Such magnetic nanonetworks have been prepared by sputtering iron on the walls of commercially available porous nano-channel alumina (NCA) membranes. The thickness dependence of coercivity has also been studied on films deposited on surface-oxidized Si and glass subtrates. These substrates are essentially non-porous and much smoother than NCAs. Our investigation shows that the coercivity of films deposited on Si and glass depends on the spatial fluctuation of thickness which arises from the roughness of the apparently smooth substrates. On the other hand, NCAs are found to be inherently quite rough, and films on NCAs show a complex thickness dependence which arises from the interplay between surface/interface roughness, domain pinning due to porosity, surface anisotropy, surface torques, and oxidation of the iron films. It was found that the growing films on NCA substrates led to partial filling up of the pore entrance, thereby reducing its effective diameter. The film growth also affects the roughness of the film, which in turn affects its coercivity. We propose a model for the thickness dependence of coercivity based on the pore fill-up geometry considering the effective pore diameter and the critical thickness at which the pore will be completely filled up. Experimental results on coercivity with thickness variation of iron network deposited on NCA generally agree with the suggested model. Received October 16, 2001. Accepted (revised) January 11, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号