首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phase diagram of the system Ag4SSe–As2Se3 is studied by means of X-ray diffraction, differential thermal analyses and measurements of the microhardness and the density of the materials. The unit-cell parameters of the intermediate phases 3Ag4SSe·As2Se3 (phase A) and Ag4SSe·2As2Se3 (phase B) are determined as follows for phase A: a=4.495 Å, b=3.990 Å, c=4.042 Å, α=89.05°, β=108.98°, γ=92.93°; for phase B: a=4.463 Å, b=4.136 Å, c=3.752 Å, α=118.60°, β=104.46°, γ=83.14°. The phase 3Ag4SSe·As2Se3 and Ag4SSe·2As2Se3 have a polymorphic transition α?β consequently at 105 and 120°C. The phase A melts incongruently at 390°C and phase B congruently at the same temperature.  相似文献   

2.
The interactions in the GeS2-Cr2S3 and Cu2GeS3-Cr2S3 sections were studied by differential thermal analysis and X-ray powder diffraction. The GeS2-Cr2S3 section was shown to be quasi-binary, with a degenerate eutectic; no ternary compound was formed. In the Cu2GeS3-Cr2S3 section, a quaternary phase of variable composition having a homogeneity range of 69–75 mol % Cr2S3 crystallized in the cubic system. The samples of this composition are spin glasses with freezing temperatures of 20–25 K.  相似文献   

3.
The perseleno‐selenoborates Rb2B2Se7 and Cs3B3Se10 were prepared from the metal selenides, amorphous boron and selenium, the thallium perseleno‐selenoborates Tl2B2Se7 and Tl3B3Se10 directly from the elements in evacuated carbon coated silica tubes by solid state reactions at temperatures between 920 K and 950 K. All structures were refined from single crystal X‐ray diffraction data. The isotypic perseleno‐selenoborates Rb2B2Se7 and Tl2B2Se7 crystallize in the monoclinic space group I 2/a (No. 15) with lattice parameters a = 12.414(3) Å, b = 7.314(2) Å, c = 14.092(3) Å, β = 107.30(3)°, and Z = 4 for Rb2B2Se7 and a = 11.878(2) Å, b = 7.091(2) Å, c = 13.998(3) Å, β = 108.37(3)° with Z = 4 for Tl2B2Se7. The isotypic perseleno‐selenoborates Cs3B3Se10 and Tl3B3Se10 crystallize in the triclinic space group P1 (Cs3B3Se10: a = 7.583(2) Å, b = 8.464(2) Å, c = 15.276(3) Å, α = 107.03(3)°, β = 89.29(3)°, γ = 101.19(3)°, Z = 2, (non‐conventional setting); Tl3B3Se10: a = 7.099(2) Å, b = 8.072(2) Å, c = 14.545(3) Å, α = 105.24(3)°, β = 95.82(3)°, γ = 92.79(3)°, and Z = 2). All crystal structures contain polymeric anionic chains of composition ([B2Se7]2–)n or ([B3Se10]3–)n formed by spirocyclically fused non‐planar five‐membered B2Se3 rings and six‐membered B2Se4 rings in a molar ratio of 1 : 1 or 2 : 1, respectively. All boron atoms have tetrahedral coordination with corner‐sharing BSe4 tetrahedra additionally connected via Se–Se bridges. The cations are situated between three polymeric anionic chains leading to a nine‐fold coordination of the rubidium and thallium cations by selenium in M2B2Se7 (M = Rb, Tl). Coordination numbers of Cs+ (Tl+) in Cs3B3Se10 (Tl3B3Se10) are 12(11) and 11(9).  相似文献   

4.
The phase diagram Cu2SeAs2Se3 was investigated by thermal and X-ray methods. Cu2Se has a limited solubility for As2Se3 (5 mole% at 769 K). The stoichiometric compound Cu3AsSe3 exists between 696 and 769 K. Cu4As2Se5, a phase at 66.6 mole% Cu2Se, decomposes peritectically at 746 K. The narrow homogeneity range (4 mole% at 683 K) extends far into the ternary space. CuAsSe2 also decomposes peritectically at 683 K. A degenerated eutectic between CuAsSe2 and As2Se3 was found at 641 K. Single crystals of Cu4As2Se5 were grown in a salt melt. A metastable modification of the high-temperature phase Cu3AsSe3 can be obtained by quenching. Cu4As2Se5 (space group R3, lattice constants a = 1404.0(1) pm, c = 960.2(1) pm), Cu6As4Se9, obtained by Cambi and Elli, and Cu7As6Se13 of Takeuchi and Horiuchi are different versions of a sphalerite-type compound with a broad homogeneity range in the system CuAsSe. CuAsSe2 is possibly monoclinic with lattice parameters of a = 946.5(1) pm, b = 1229.3(1) pm, c = 511.7(1) pm, and β = 98.546(4)°. The enthalpy of mixing of Cu2Se and As2Se3 in the liquid state is endothermic.  相似文献   

5.
The crystals of Ni0,33Mo3Se4, are triclinic, space group P1, with two formula units in a cell: a = 6,727 (9) Å, b = 6,582 (11) Å, c = 6,751 (6) Å, α = 90.61° (10), β = 92.17° (10), γ = 90.98° (12.) The structure was solved by analogy with Mo3Se4 and refined by a full-matrix least squares program to R = 0,093 for 822 independent reflexions. The channels present in Mo3Se4 are occupied by Ni so that Ni0,33Mo3Se4 is always a metallic compound.  相似文献   

6.
The compound Cr2TiO5 could be synthesized as a stoichiometric single phase above 1660°C in air. Application of selected area electron diffraction, high resolution electron microscopy and powder X-ray diffraction studies showed that Cr2TiO5 is isomorphous with CrFeTiO5, with V3O5 type structure. It is monoclinic, a = 7.020(1)Å, b = 5.025(1)Å, c = 9.945(2)Å and β = 111.43(2)°. It was found that Cr2TiO5 is unstable relative to a mixture of Cr2O3 (ss) and a so-called “E” phase, below 1660°C.  相似文献   

7.
The phase behaviour of 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using high pressure differential thermal analysis. The phase transition sequence crystal 4 (Cr4)-crystal 3 (Cr3)-crystal 2 (Cr2)-crystal 1 (Cr1)-smectic C (SmC)-Cubic (Cub)-smectic A (SmA)-'structured liquid' (I1)-isotropic liquid (I2) was observed for a virgin sample on heating at atmospheric pressure. The stable temperature region of the optically isotropic cubic phase becomes narrower on increasing pressure and disappears at pressures above 65 MPa. The T vs. P phase diagram exhibits the existence of a triple point (65 MPa, 207.6°C) for the cubic phase, a new mesophase (X), and the SmA phase, indicating the upper limit for the cubic phase. The new mesophase, denoted here as X, appears in place of the cubic phase at pressures above 65 MPa. The phase diagram also indicates that the Cr4-Cr3, Cr3-Cr2, and Cr2-Cr1 transition lines merge at about 40-50 MPa and then only the Cr4-Cr1 transition is observed in the solid state at higher pressures. Thus the phase transition process on heating changes from the sequence Cr4-Cr3-Cr2-Cr1-SmC-Cub-SmA-I1-I2 at atmospheric pressure to Cr4-Cr1-SmC-X-SmA-I1-I2 in the high pressure region above 65 MPa, via Cr4-Cr3-Cr2-Cr1-SmC-(X)-Cub-SmA-I1-I2 in the low pressure region.  相似文献   

8.
The brown crystals of [PMePh3]2[Se2Br6] ( 1 ) and red crystals of [PMePh3]2[SeBr6(SeBr2)2] ( 2 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of methyltriphenylphosphonium bromide. The crystal structures of 1 and 2 has been determined by the X‐ray methods and refined to R = 0.0373 for 2397 reflections and 0.0397 for 3417 reflections, respectively. The salt 1 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 13.202(5) Å, b = 11.954(4) Å, c = 13.418(6) Å, β = 93.08(4)° (193(2)). The crystals of 2 are triclinic, space group with the cell dimensions a = 10.266(3) Å, b = 11.311(3) Å, c = 11.619(2) Å, α = 108.87(2)°, β = 105.72(2)°, γ = 99.40(2)° (193(2) K). In the solid state structure of 1 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square planar SeBr4 units sharing a common edge through two μ‐bridging Br atoms. The terminal SeII–Br bonds are 2.3984(11) and 2.4273(11) Å, whereas the bridging μBr–SeII bonds are 2.7817(11) and 2.9081(12) Å. In the solid state the trinuclear [SeBr6(SeBr2)2]2? anion of 2 is centrosymmetric too and contains a nearly regular [SeBr6] octahedron where the four equatorial bromo ligands each have developed bonds to the SeII atoms of the SeBr2 molecules. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are 3.0603(15) and 3.1043(12) Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The SeIV–Br distances are in the range 2.5570(9)–2.5773(11) Å and the SeII–Br bond lengths in coordinated SeBr2 molecules – 2.3411(12) and 2.3421(10) Å.  相似文献   

9.
High-temperature silica-tube syntheses and room-temperature copper extraction experiments of the single phases found with the former technique have established five new ternary phases in the TlCuSe system. The compositions were determined by microprobe analysis. The new phases have been crystallographically characterized by means of single-crystal and powder diffraction: TlCu3Se2 (CsAg3S2 type),a = 15.2128(7)Å,b = 4.0115(2)Å,c = 8.3944(4)Å, β = 111.700°(4); Tl5Cu14Se10 (new type),C2/m?)a = 18.097(2)Å,b = 3.9582(2)Å,c = 18.118(2)Å, β = 116.089°(7); TlCu5Se3 (new type,P4¯n2?),a = 12.9023(2)Å,c = 3.9905(1)Å; TlCu5−xSe3 (new type,Pnn2?),a = 12.43(1)Å,b = 12.80(1)Å,c = 3.93(1)Å; TlCu7Se4 (NH4Cu7S4 type),a = 10.4524(2)Å,c = 3.9736(1)Å. The latter phase may be considered as stoichiometric crookesite.  相似文献   

10.
The TlAs2Se4-Tl3As2Se3Te3 system was studied using differential thermal analysis (DTA), powder X-ray diffraction, microstructure observation, and microhardness and density measurements. A phase diagram of the title system was constructed. This system is a quasi-binary join of the TlSe-As2Se3-As2Te3 quasi-ternary system. All alloys of the system under standard conditions are prepared in the glassy form. The system has a eutectic, which contains 50 mol % Tl3As2Se3Te3 and melts at 150°C. The TlAs2Se4-base solid solution in the system extends to 12 mol % Tl3As2Se3Te3, and Tl3As2Se3Te3-based solid solution extends to 20 mol % TlAs2Se4.  相似文献   

11.
Investigations on the Pseudobinary System Bi2Se3/BiI3 The phase diagram of the pseudobinary system Bi2Se3/BiI3 was investigated by DTA, total pressure measurements and x-ray phase analysis. Only BiSeI exist as a ternary phase in this system. The compound melts incongruently at 545 °C. Heat of formation and standard entropy were calculated from vapor pressure data.ΔHB° (BiSeI, f, 298) = (–23.4 ± 1.9) kcal/mol S°(BiSeI, f, 298) = (38.7 ± 3.5) cal/K · mol  相似文献   

12.
Two new ternary compounds with composition K8Zr6Se30 were prepared by reacting zirconium powder in potassium polyselenide melts. Both compounds crystallize in the triclinic space group P1 with a = 12.391(1) Å, b = 14.897(2) Å, c = 15.253(2) Å, α = 73.149(9)°, β = 76.330(9)°, γ = 70.023(9)° and V = 2502.8(3) Å3 for I and a = 12.2793(8) Å, b = 14.887(1) Å, c = 22.512(2) Å, α = 72.714(7)°, β = 88.475(7)°, γ = 70.748(7)° and V = 3698.1(4) Å3 for II . Their structures consist of infinite linear one‐dimensional anionic chains running parallel to [110], which are connected by the potassium cations. The structural differences between both compounds originate from some disordering in one of the two crystallographically independent anionic chains of each compound, in which Se2– anions are exchanged by Se22– anions to some degree. The optical band gap was determined by UV/Vis reflectance spectra to 1.91 eV for I and 1.81 eV for II . Differential scanning calorimetry investigations show, that II decomposes reversibly at about 500 °C to K2Se3 and ZrSe3. On cooling II is formed again. These results are confirmed by the direct reaction between K2Se3 and ZrSe3 which leads directly to II .  相似文献   

13.
Two dinuclear complexes [Zn(μ-L)(NO3)(H2O)]2 (1) and [Cu2(μ-L)2(HL)2](NO3)2(C12H8Br2)0.5·H2O (2), (HL = 3-(2-pyridyl)pyrazole, C12H8Br2 = 4,4′-dibromobiphenyl) are synthesized under hydrothermal conditions and characterized by elemental analysis and X-ray single crystal diffraction. Crystal data for 1: triclinic, \(P\bar 1\), a = 8.8478(7) Å, b = 15.0550(11) Å, c = 16.4310(12) Å, α = 107.588(4)°, β = 112.498(3)°, γ = 115.595(3)°, V = 2099.8(9) Å3, Z = 2; for 2: triclinic, \(P\bar 1\), a = 7.2870(15) Å, b = 8.6840(17) Å, c = 9.3290(19) Å, α = 107.588(4)°, β = 112.498(3)°, γ = 115.595(3)°, V = 528.77(18) Å3, Z = 1. Complex 1 and 2 are both dinuclear structures which are further packed into a 1D supramolecular chain and a 3D supramolecular framework via weak C–H…O hydrogen bond interactions respectively.  相似文献   

14.
Brown crystals of [PMePh3]2[TeBr6(SeBr2)2] ( 1 ) were obtained when selenium and bromine (1:1) react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriphenylphosphonium bromide. The salt 1 crystallizes in the triclinic space group P1¯ with the cell dimensions a = 10.3630(14)Å, b = 11.5140(12)Å, c = 11.7605(17)Å, α = 108.643(9)°, β = 106.171(10)° and γ = 99.077(9)° (296 K). In the solid state the [TeBr6(SeBr2)2]2— anion contains a nearly regular [TeBr6] octahedron where the four equatorial bromo ligands each have developed a bond to the SeII atom of a SeBr2 molecule. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are observed in the range 3.11—3.21Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The TeIV—Br distances are in the range 2.67—2.72Å, and the SeII—Br bond lengths in coordinated SeBr2 molecules in the range 2.33—2.34Å.  相似文献   

15.
The Crystal Structure of Cu3SbSe3 The hitherto unknown crystal structure of Cu3SbSe3 has been determined from single crystals. The compound crystallizes in the orthorhombic system, space group Pnma (No. 62), with a = 7.9865(8), b = 10.6138(9) and c = 6.8372(7) Å, V = 579.6(1) Å3, Z = 4. Most remarkable feature of the structure are groups of three cis-edge-sharing tetrahedra [Cu3Se8] which are interlinked to a threedimensional arrangement by SbSe3-units. In contrast to Cu3SbS3 in the temperature range from ?180 to 25°C no hints for a phase transition could be detected by means of X-ray- and thermoanalytical methods.  相似文献   

16.
The chemical interaction in the Sb2Se3-Ho2Se3 system was studied by physicochemical analysis methods (by differential thermal, X-ray powder diffraction, and microstructural analyses and also by density and microhardness measurements). The state diagram of the system was constructed. It was found that the Sb2Se3-Ho2Se3 section is a quasi-binary section of the Ho-Sb-Se ternary system. In the system, the compound HoSbSe3 forms, which melts incongruently at 1050 K and crystallizes in the rhombic system at the unit cell parameters a = 11.855 Å, b = 11.316 Å, c = 4.139 Å, and Z = 4 in the space group Pbnm-D 2h 16 . The solubility of solid solutions based on Sb2Se3 at room temperature reaches 8 mol % Ho2Se3, whereas solid solutions based on Ho2Se3 were not detected.  相似文献   

17.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

18.
Determination of the homogeneity range of the VSe2 phase was made. It extends from V1.01Se2 to V1.18Se2 at 800°C and from V1.04Se2 to V1.10Se2 at 300°C. The selenium-rich limit of the adjacent monoclinic phase is about V1.20Se2 between 700 and 1000°C. The two-phase region between monoclinic and the VSe2 phases extends from V1.18Se2 to V1.25Se2 at lower temperatures. Above 700°C, the mixture of two phases becomes a pseudosingle phase of a mixed-layer type. Equilibrium vapor pressures of selenium on the solid VxSe2 (x = 1.04–1.28) were measured by a quartz Bourdon gauge between 600 and 1000°C. Activities and other partial molar quantities were evaluated. Stability of the vanadium atoms in the CdI2-like VxSe2 phase was studied. A statistical model was applied for the nonstoichiometric VxSe2 with the CdI2-like structure. Vanadium atoms in the vanadium-rich layers are more stabilized than those in the vanadium-poor layers, and the differences between each stabilizing energy was about 20.0 kcal/mole.  相似文献   

19.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXI. (Mg1–xCrx)2P2O7, CaCrP2O7, SrCrP2O7 and BaCrP2O7 – New Diphosphates of Divalent Chromium In the quasi‐binary systems A2P2O7/Cr2P2O7 (A = Mg, Ca, Sr, Ba) the solid solution (Mg1–xCrx)2P2O7 as well as the new compounds CaCrP2O7, SrCrP2O7, and BaCrP2O7 have been synthesized and characterized for the first time. In the whole experimental range (0.01 < x < 0.94; T = 950 °C) the solid solution (Mg1–xCrx)2P2O7 is isotypic to the pure phases β‐Mg2P2O7 and β‐Cr2P2O7; but no phase transition (β → α) to a low‐temperature modification, as in Mg2P2O7 and Cr2P2O7, was found. CaCrP2O7 ( A ), SrCrP2O7 ( B ), and BaCrP2O7 ( C ), phases without detectable homogenity range in the other quasi‐binary systems are not structurally related to each other, but are isotypic to the corresponding compounds containing cobalt. [( A ): P‐1, Z = 2, a = 6.312(2) Å, b = 6.499(2) Å, c = 6.916(2) Å, α = 83.12(3)°, β = 88.37(3)°, γ = 67.72(3)°, 3235 independent reflections, R1 = 0.041, wR2 = 0.112; ( C ): P‐1, Z = 2, a = 5.382(8) Å, b = 7.271(8) Å, c = 7.589(4) Å, α = 103.33(7)°, β = 89.91(9)°, γ = 93.6(1)°, 1571 independent reflections, R1 = 0.085, wR2 = 0.31]. We have reported earlier details on SrCrP2O7. The coordination of Cr2+ by oxygen is distorted octahedral in ( A) , while in the structures of ( B) and ( C) square‐pyramidal environment is found. The results of UV/VIS‐spectroscopic and magnetic measurements as well as IR‐spectra of the diphosphates are reported.  相似文献   

20.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号