首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Further exploration of the Ω-field theory as first proposed by Yu (1989) is here presented to cover the equation of motion of a test particle which induces gravitational radiation. The same theory is shown to contain an exact gravitational radiation equation derived as a logical consequence of field equations without extra postulates. In this general dynamic context the theory is renamed "The (Ω,Aμr) field Theory".  相似文献   

2.
Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by com-bining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momen-tum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials. Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and ana-lyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.  相似文献   

3.
In this paper, a total criterion on elastic and fatigue failure in complex stress, that is, octahedral stress strength theory on dynamic and static states on the basis of studying modern and classic strength theories. At the same time, an analysis of an independent and fairly comprehensive theoretical system is set up. It gives generalized failure factor by 36 materials and computative theory of the 11 states of complex stresses on a point, and derives the operator equation on generalized allowable strength and a computative method for a total equation can be applied to dynamic and static states. It is illustrated that the method has a good exactness through computation of eight examples of engineering. Therefore, the author suggests applying it to engineering widely.  相似文献   

4.
The reflection and radiation of a wave system at the open end of a submerged.semi-infinite elastic pipe are studicd.This wave system consists of a flexural wave in the pipe,anacoustic surface wave in the fluid exterior to the pipe and an acoustit wave in the pipe’sinterior.Fourier transfrom techniques are used to formulate this semi-infinite geometryproblem rigorously as a Wiener-Hopf type equation.An approximate solution is obtainedby using a perturbation method in which the ratio of the massdensities of the fluid and thepipe material is regarded as a small parameter.The calculation of the reflection coefficientis emphasized,and the polar plots of the radiation coefficient are also presented.  相似文献   

5.
Based on the nonlocal elasticity theory, the vibra-tion behavior of circular double-layered graphene sheets (DLGSs) resting on the Winkler- and Pasternak-type elas-tic foundations in a thermal environment is investigated. The governing equation is derived on the basis of Eringen’s nonlocal elasticity and the classical plate theory (CLPT). The initial thermal loading is assumed to be due to a uniform temperature rise throughout the thickness direc-tion. Using the generalized differential quadrature (GDQ) method and periodic differential operators in radial and cir-cumferential directions, respectively, the governing equation is discretized. DLGSs with clamped and simply-supported boundary conditions are studied and the influence of van der Waals (vdW) interaction forces is taken into account. In the numerical results, the effects of various parameters such as elastic medium coefficients, radius-to-thickness ratio, thermal loading and nonlocal parameter are examined on both in-phase and anti-phase natural frequencies. The results show that the thermal load and elastic foundation respec-tively decreases and increases the fundamental frequencies of DLGSs.  相似文献   

6.
The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations. Using deformation harmonious conditions of the interface, the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell. In studying the acoustic field produced by vibration of the submerged ring-stiffened cylindrical coated shell, the structure dynamic equation, Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou-pling vibration equation of the sound-fluid-structure. The extract of sound pressure comes down to the extract of coupling vibration equation. By use of the solution of the equation, the influences of hydrostatic pressure, physical characters and geometric parameters of the layer on sound radiation are discussed.  相似文献   

7.
We extend the 2D Landau phase transition theory to the bacterial flagellar filament which displays the phase transition between the left handed normal form and the right handed semi-coiled form. The bacterial flagellar filament is treated as an elastic thin rod based on the Kirchhoff’s thin rod theory. Mechanical analysis is performed on the periodical phase transition of the filament between the two helical structures of the opposite charity. The curvature and twist are chosen as the order parameters in constructing the phase transition model of the filament. The established model is applied to study the instability properties of the filament and to investigate the loading and deformation conditions of the phase transition. In addition, the curvature and twist gradient energy are considered to describe the interface properties of the two phases.  相似文献   

8.
In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equation is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium,the stress–strain curves from 77 to 764 K(copper), and 77 to 870 K(magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit,which makes it easy to implement into the applications.  相似文献   

9.
Although many modeling approaches exist for analyzing the behavior of capacitive micro-machined ultrasonic transducers(CMUTs),the relation equation between the design parameters with input and output is still lacking.What there is can only be used to analyze the dynamic performance of CMUT indirectly and qualitatively,such as stiffness and sound pressure.A lumped-parameter theoretical model based on the dynamic theory is proposed in this paper.The relation equations between the design parameters with inputs and outputs are given.The results obtained by the proposed model agree well with those by finite element method(FEM)simulation.The dynamic and static behavior of CMUT can be clearly depicted,which is helpful for design and optimization iterations.This shows that the proposed model makes it easier to optimize the parameters of a CMUT with respect to output and bandwidth directly and to better understand the influence of each parameter.  相似文献   

10.
A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudi-nal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity fac-tor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual inte-gral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor mono-tonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.  相似文献   

11.
A theory of elasticity for the bending of orthogonal anisotropic beams has been developed by analogy with the special case, which can be obtained by applying the theory of elasticity for bending of transversely isotropic plates to the problems of two deminsions. In this paper, we present a method to solve the problems of bending of orthogonal anisotropic beams and a new theory of the deep-beam whose ratio of depth to length is larger. It is pointed out that Reissner's theory to account for the effect of transverse shear deformation is not very approximate in the components of stress,  相似文献   

12.
In the analytic theory of differential equations the exact explicit analytic solution has not been obtained for equations of the non-Fuchsian type (Poincare's problem).The new theory proposed in this paper for the first time affords a qeneral method of finding exact analytic expression for irregular integrals. By discarding the assumption of formal solution of classical theory, our method consists in deriving a correspondence relation from the equation itself and providing the analytic structure of irregular integrals naturally by the residue theorem. Irregular integrals are made up of three parts: noncontracted part, represented by ordinary recursion series, all-and semi-contracted part by the so-called tree series. Tree series solutions belong to analytic function of the new kind with recursion series as the special case only. The purpose of our present paper consists of the establishment of a general theory for the irregular integrals. For this it is needed to elucidate the essence of Poincare's prob  相似文献   

13.
In this study, nonlinear static and dynamic responses of a microcantilever with a T-shaped tip mass excited by electrostatic actuations are investigated. The electrostatic force is generated by applying an electric voltage between the horizontal part of T-shaped tip mass and an opposite electrode plate. The cantilever microbeam is modeled as an Euler–Bernoulli beam. The T-shaped tip mass is assumed to be a rigid body and the nonlinear effect of electrostatic force is considered. An equation of motion and its associated boundary conditions are derived by the aid of combining the Hamilton principle and Newton's method.An exact solution is obtained for static deflection and mode shape of vibration around the static position. The differential equation of nonlinear vibration around the static position is discretized using the Galerkin method. The system mode shapes are used as its related comparison functions. The discretized equations are solved by the perturbation theory in the neighborhood of primary and subharmonic resonances.In addition, effects of mass inertia, mass moment of inertia as well as rotation of the T-shaped mass, which were ignored in previous works, are considered in the analysis. It is shown that by increasing the length of the horizontal part of the T-shaped mass, the amount of static deflection increases,natural frequency decreases and nonlinear shift of the resonance frequency increases. It is concluded that attaching an electrode plate with a T-shaped configuration to the end of the cantilever microbeam results in a configuration with larger pull-in voltage and smaller nonlinear shift of the reso-nance frequency compared to the configuration in which the electrode plate is directly attached to it.  相似文献   

14.
The low-thrust trajectory optimization with complicated constraints must be considered in practical engineering. In most literature, this problem is simplified into a two-body model in which the spacecraft is subject to the gravitational force at the center of mass and the spacecraft's own electric propulsion only, and the gravity assist (GA) is modeled as an instantaneous velocity increment. This paper presents a method to solve the fuel-optimal problem of low-thrust trajectory with complicated constraints in a full ephemeris model, which is closer to practical engineering conditions. First, it introduces various perturbations, including a third body's gravity, the nonspherical perturbation and the solar radiation pressure in a dynamic equation. Second, it builds two types of equivalent inner constraints to describe the GA. At the same time, the present paper applies a series of techniques, such as a homotopic approach, to enhance the possibility of convergence of the global optimal solution.  相似文献   

15.
A new method based on a modified line-spring model is developed forevaluating the natural frequencies of vibration of a cracked beam.This model inconjunction with the Euler-Bernoulli beam theory,modal analysis and linear elasticfracture mechanics is applied to obtain an approximate characteristic equation of acracked hinged-hinged beam.By solving this equation the natural frequencies aredetermined for different crack lengths in different positions.The results show goodagreement with the solutions through finite element analysis.The present method maybe extended to analyze other cracked complicated structures with various boundaryconditions.  相似文献   

16.
The thermoelastic interaction for the three-phase-lag (TPL) heat equation in an isotropic infinite elastic body with a spherical cavity is studied by two-temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of TPL is a hyperbolic partial differential equation with a fourth-order derivative with respect to time. The medium is assumed to be initially quiescent. By the Laplace transformation, the fundamental equations are expressed in the form of a vector-matrix differential equation, which is solved by a state-space approach. The general solution obtained is applied to a specific problem, when the boundary of the cavity is subjected to the thermal loading (the thermal shock and the ramp-type heating) and the mechanical loading. The inversion of the Laplace transform is carried out by the Fourier series expansion techniques. The numerical values of the physical quantity are computed for the copper like material. Significant dissimilarities between two models (the two-temperature Green-Naghdi theory with energy dissipation (2TGN-III) and two-temperature TPL model (2T3phase)) are shown graphically. The effects of two-temperature and ramping parameters are also studied.  相似文献   

17.
The reflection and radiation of a wave system at the open end of a submerged semi-infinite elastic pipe are studied. This wave system consists of a flexural wave in the pipe, an acoustic surface wave in the fluid exterior to the pipe and an acoustic wave in the pipe’s interior. Fourier transform techniques are used to formulate this semi-infinite geometry problem rigorously as a Wiener-Hopf type equation. An approximate solution is obtained by using a perturbation method in which the ratio of the massdensities of the fluid and the pipe material is regarded as a small parameter. The calculation of the reflection coefficient is emphasized, and the polar plots of the radiation coefficient are also presented.  相似文献   

18.
Similar to the method of continuum mechanics, the variation of the price of index futures is viewed to be continuous and regular. According to the characteristic of index futures, a basic equation of price of index futures was established. It is a differential equation, its solution shows that the relation between time and price forms a logarithmic circle. If the time is thought of as the probability of its corresponding price, then such a relation is perfectly coincided with the main assumption of the famous formula of option pricing, based on statistical theory, established by Black and Scholes, winner of 1997 Nobel’ prize on economy. In that formula, the probability of price of basic assets (they stand for index futures here) is assummed to be a logarithmic normal distribution. This agreement shows that the same result may be obtained by two analytic methods with different bases. However, the result, given by assumption by Black-Scholes, is derived from the solution of the differential equation.  相似文献   

19.
A distributed optimal control problem for a system described by a bio-heat equation for a homogeneous plane slab of tissue is analytically investigated. The required tissue temperature at a particular location of the tumour in hyperthermia can be attained within the total operation time of the process due to induced microwave radiation which is taken as control. The tissue temperature against the tissue length at different operation time of the process is considered to attain the desired temperature of the tumor.  相似文献   

20.
In this paper,it is proved that Barenblatt’s equation of mean movement of the inhomogeneous fluid is not cor-rect,because his equations are based on the assumption that the characteristics of inhomogeneity of fluid are only af-fected with respect to gravitational terms.The correct form of the equation of mean movement of the inhomogeneous fluid is derived in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号