首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonequilibrium thermodynamics of pseudoelasticity   总被引:2,自引:0,他引:2  
Solid-solid phase transitions often exhibit hystereses, and a hysteresis indicates energy dissipation. Pseudoelasticity refers to a hysteretic loadingunloading characteristic observed in the stress-induced martensitic transformation of shape memory alloys.This paper describes the thermodynamic model ofideal pseudoelasticity, a largely schematized adaptation of the experimental observations, and it reviews the works of other authors on thermodynamics of pseudoelasticity. Different approaches vary widely and we have chosen to put them into perspective by contrasting their assumptions and predictions against those of ideal pseudoelasticity.Ideal pseudoelasticity receives support from the experimental results of Fu [1] and its thermodynamic properties have been exploited by Huo [2]. The model makes use of an analytical ansatz proposed by Müller [3] in which the hysteresis is assumed to be due to the presence of a coherency energy in solid phase mixtures. This model permits the study of stability of the equilibrium states and the calculation of the energy dissipation or entropy production during the phase transition: The equilibrium states of a phase mixture are found to be unstable in load-controlled processes and the dissipated energy is related to the coherency coefficient.We also discuss some open problems concerning the states inside the hysteresis loop and the formation of interfaces.  相似文献   

2.
INTERNALVARIABLESANDTHERMODYNAMICMODELLINGOFPSEUDOELASTICITYHuoYongzhong(霍永忠)(ReceivedFeb.2.1996;CommunicatedbyZhengQianshui)...  相似文献   

3.
We give a numerical treatment of phase mixtures in pseudoelasticity from a purely mathematical point of view. It is based on a surprising result that the approximate solution may consist of persistent oscillations in strain which resemble the experimentally observed interface patterns. Such a solution is obtained from a sequence of solutions for a rate-type viscoelastic problem with a non-monotone equilibrium stress-strain relation, for which in the limit as the viscosity tends to infinity the viscoelastic problem reduces to the rate-independent elastic problem describing phase transitions. In this manner, it seems to give yet another perspective for the phase mixture from dynamic point of view as the evolution of an unstable state, in contrast to the traditional treatment from stability analysis for phase equilibrium.  相似文献   

4.
A novel pseudoelastic behavior was recently discovered in [0 1 1¯ 0]-oriented ZnO nanowires under uniaxial tensile loading and unloading. This behavior results from a reversible transformation from the parent wurtzite (WZ) structure to a previously unknown graphitic structure (HX) and is associated with recoverable strains up to 16%. In this paper, a micromechanical continuum model is developed to characterize this behavior. Using the first law of thermodynamics, the model decomposes the transformation into an elastic process of structural transitions between WZ and HX through a sequence of thermodynamically reversible phase equilibrium states and a thermodynamically irreversible process of interface propagation. The elastic equilibrium transition process is modeled with strain energy functions of the two constituent phases which are obtained from independent molecular dynamics calculations. The dissipative interface propagation process is modeled phenomenologically with a function which relates dissipation to the interfacial area between the two phases. The model captures major characteristics of the behavior of wires with lateral dimensions between 20 and 40 Å over the temperature range of 100-500 K.  相似文献   

5.
Transformation pseudoelasticity and shape memory effect of alloy materials are investigated from the thermomechanical point of view. The thermomechanical constitutive equations and the kinetics of transformation established by the theory are applied to explain the stress-strain-temperature behavior of the material. Numerical illustrations for the uniaxial stress state are given.  相似文献   

6.
Pseudoelasticity is a phenomenon that occurs in alloys with shape memory: In a loading-unloading cycle a body will return to its original configuration, but its path in a load-deformation diagram will run through a hysteresis loop.Pseudoelastic behaviour can be modelled by statistical mechanics which produces a non-monotone load-deformation isotherm. Once such a nonmonotone curve has been calculated there is the possibility of a phase transition that is connected with a hysteresis loop.The paper describes a method for the calculation of the width of the hysteresis. It comes to the conclusion that this width is determined by the interfacial energy associated with domain boundaries between the phases. The bigger that energy is the bigger is the hysteresis loop.  相似文献   

7.
The temperature fields and the energy dissipations of shape memory alloys during the stress-induced martensitic transformations are studied theoretically and experimentally. The effect of the loading rate is analyzed. It was found that the temperature field inside a shape memory alloy sample varies strongly in space and time. The increase rate of the temperature is given by the difference between the rate of the latent heat release and the rate of the heat convection and conduction. The notion and the rate dependence of the energy dissipation are discussed in connection with the stress–strain hysteresis, the entropy production, and the Clausius–Duhem inequality.  相似文献   

8.
In some previous papers [1], [2] pseudoelasticity in tensile experiments has been treated thermodynamically under the assumption that the relevant constitutive ingredients are
(i)  a non-convex free energy;
(ii)  coherency between the austenitic and martensitic phase.
The form of the coherency energy was assumed to be proportional to the product of phase fractions of the two phases. Recently Rogers [3] has proposed a slight variation of this ansatz: The factor of proportionality should depend on the transformation strain. This new form of coherence energy is investigated in this paper. An attractive feature of this new assumption is that the strains of the coexisting phases in equilibrium remain unchanged as the transformation proceeds.  相似文献   

9.
10.
A 3-D constitutive model for polycrystalline shape memory alloys (SMAs), based on a modified phase transformation diagram, is presented. The model takes into account both direct conversion of austenite into detwinned martensite as well as the detwinning of self-accommodated martensite. This model is suitable for performing numerical simulations on SMA materials undergoing complex thermomechanical loading paths in stress–temperature space. The model is based on thermodynamic potentials and utilizes three internal variables to predict the phase transformation and detwinning of martensite in polycrystalline SMAs. Complementing the theoretical developments, experimental data are presented showing that the phase transformation temperatures for the self-accommodated martensite to austenite and detwinned martensite to austenite transformations are different. Determination of some of the SMA material parameters from such experimental data is also discussed. The paper concludes with several numerical examples of boundary value problems with complex thermomechanical loading paths which demonstrate the capabilities of the model.  相似文献   

11.
12.
The familiar small strain thermodynamic 3D theory of isotropic pseudoelasticity proposed by Raniecki and Lexcellent is generalized to account for geometrical effects. The Mandel concept of mobile isoclinic, natural reference configurations is used in order to accomplish multiplicative decomposition of total deformation gradient into elastic and phase transformation (p.t.) parts, and resulting from it the additive decomposition of Eulerian strain rate tensor. The hypoelastic rate relations of elasticity involving elastic strain rate are derived consistent with hyperelastic relations resulting from free energy potential. It is shown that use of Jaumann corotational rate of stress tensor in rate constitutive equations formulation proves to be convenient. The formal equation for p.t. strain rate , describing p.t. deformation effects is proposed, based on experimental evidence. Phase transformation kinetics relations are presented in objective form. The field, coupled problem of thermomechanics is specified in rate weak form (rate principle of virtual work, and rate principle of heat transport). It is shown how information on the material behavior and motion inseparably enters the rate virtual work principle through the familiar bridging equation involving Eulerian rate of nominal stress tensor.
  相似文献   

13.
14.
15.
The interaction of light and matter leads to the scattering of light and the scattered light carries information about the thermodynamic properties of the matter. The light scattered on dilute gases carries far more information about the gas than is comprised within the Navier-Stokes-Fourier theory of gases. It takes extended thermodynamics of many moments to satisfactorily describe the characteristic features of such light quantitatively.  相似文献   

16.
The underlying thermodynamic aspects of linear viscoelasticity are discussed. In particular, from the Extended Irreversible Thermodynamics theory we systematically derive the Maxwell model exhibiting its compatibility with thermo-dynamics and assessing its conditions of validity. We also calculate the equilibrium transverse velocity auto-correlation function and the frequency dependent shear viscosity. Nonlinear generalizations of our model are suggested and the possible role of extended thermodynamics in selecting constitutive equations is also discussed.  相似文献   

17.
Contact geometry provides a natural setting for classical thermo-dynamics. In this paper we use it to derive the structure of mesoscopic dynamics (GENERIC) expressing its compatibility with thermodynamics. In the second part we derive kinematics (Poisson brackets) of a large family of mesoscopic state variables.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号