首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The statistical mechanics and microhydrodynamics of active matter systems have been studied intensively during the past several years, by various soft matter physicists, chemists, engineers, and biologists around the world. Recent attention has focused on the fascinating nonequilibrium behaviors of active matter that cannot be observed in equilibrium thermodynamic systems, such as spontaneous collective motion and swarming. Even minimal kinetic models of active Brownian particles exhibit self-assembly that resembles a gas–liquid phase separation from classical equilibrium systems. Self-propulsion allows active systems to generate internal stresses that enable them to control and direct their own behavior and that of their surroundings. In this review, we discuss the forces that govern the motion of active Brownian microswimmers, the stress (or pressure) they generate, and the implication of these concepts on their collective behavior. We focus on recent work involving the unique “swim pressure” exerted by active systems and discuss how this perspective may be the basic underlying physical mechanism responsible for self-assembly and pattern formation in all active matter. We discuss the utility of the swim pressure concept to quantify the forces, stresses, and the (thermo?) dynamics of active matter.  相似文献   

2.
"Active" components can be introduced into a passive system to completely change its physical behavior from its typical behavior at thermodynamic equilibrium. To reveal the interaction mechanisms between individuals, researchers have designed unique self-propelled particles to mimic the collective behavior of biological systems. This review focuses on recent theoretical and experimental advances in the study of self-propelled particle systems and their individual and collective behaviors. The potential applications of active particles in chemical, biological and environmental sensing and single particle imaging are discussed.  相似文献   

3.
A new derivation of the Born–Oppenheimer separation of electronic and nuclear motion is presented. The arguments used differ from those in earlier works in not being specially designed for molecules. Instead they aim at an intuitive understanding of the qualitative behavior of the low energy bound states of any, real or hypothetical, Coulomb interacting system of particles. The virial theorem is the starting point of the discussion. After a brief explanation of how it can be used to understand atomic structure it is applied to molecules. It is found that coordinates of collective and individual motion are natural coordinates for the approximate separation, rather than nuclear and electronic. It is also shown that it is the form of the interaction between the particles that is responsible for the separation; the smallness of met/MNu is irrelevant.  相似文献   

4.
The front cover artwork is provided by Prof. Gao's group. The image shows the motion patterns transition of the active gel group under the step light intensity, which describes the mechanism of a new collective emergence structure. Read the full text of the Research Article at 10.1002/cphc.202300054 .  相似文献   

5.
Achieving substantial anisotropic thermal expansion (TE) in solid-state materials is challenging as most materials undergo volumetric expansion upon heating. Here, we describe colossal, anisotropic TE in crystals of an organic compound functionalized with two azo groups. Interestingly, the material exhibits distinct and switchable TE behaviors within different temperature regions. At high temperature, two-dimensional, area zero TE and colossal, positive linear TE (α=211 MK−1) are attained due to dynamic motion, while at low temperature, moderate positive TE occurs in all directions. Investigation of the solid-state motion showed the change in enthalpy and entropy are quite different in the two temperature regions and solid-state NMR experiments support motion in the solid. Cycling experiments demonstrate that the solid-state motions and TE behaviors are completely reversible. These results reveal strategies for designing significant anisotropic and switchable behaviors in solid-state materials.  相似文献   

6.
Modern self-assembly techniques aiming to produce complex structural order or functional diversity often rely on non-equilibrium conditions in the system. Light, electric, or magnetic fields are predominantly used to modify interaction profiles of colloidal particles during self-assembly or induce complex out-of-equilibrium dynamic ordering. The energy injection rate, properties of the environment are important control parameters that influence the outcome of active (dynamic) self-assembly. The current review is focused on a case of collective dynamics and self-assembly of particles with externally driven torques coupled to a liquid or solid interface. The complexity of interactions in such systems is further enriched by strong hydrodynamic coupling between particles. Unconventionally ordered dynamic self-assembled patterns, spontaneous symmetry breaking phenomena, self-propulsion, and collective transport have been reported in torque-driven colloids. Some of the features of the complex collective behavior and dynamic pattern formation in those active systems have been successfully captured in simulations.  相似文献   

7.
We report molecular dynamics simulation results for Stockmayer fluids confined to narrow slitlike pores with structureless, nonconducting walls. The translational and rotational dynamics of the dipolar particles have been investigated by calculating autocorrelation functions, diffusion coefficients, and relaxation times for various pore widths (five or less particle diameters) and directions parallel and perpendicular to the walls. The dynamic properties of the confined systems are compared to bulk properties, where corresponding bulk and pore states at the same temperature and chemical potential are determined in parallel grand canonical Monte Carlo simulations. We find that the dynamic behavior inside the pore depends on the distance from the walls and can be strongly anisotropic even in globally isotropic systems. This concerns especially the particles in the surface layers close to the walls, where the single particle and collective dipolar relaxation resemble that of true two-dimensional dipolar fluids with different in-plane and out-of-plane relaxations. On the other hand, bulklike relaxation is observed in the pore center of sufficiently wide pores.  相似文献   

8.
Active particles can autonomously propel and have the tendency to organize into high-order ensembles and phases that evolve and reconfigure. They have emerged as a focused subject in contemporary colloid science, holding great promise in advancing fields, such as cargo delivery, sensing, micromachinery and microrobotics, and materials science. Realization of the full potentials of active particles requires delicate control of their dynamics in propulsion and assembly, which is challenging due to the out-of-equilibrium nature of such systems. Recently, systematically engineered colloidal shapes have been exploited as an effective means to tune and even program the dynamic behaviors of active particles. Various anisotropic particles, with controlled geometries and possessing either homogeneous or heterogeneous composition, have been fabricated, regulating how particles actively propel, interact, and assemble under several chemical and physical stimuli. In this paper, we provide an overview of these progresses. We also briefly discuss our view on the future directions and challenges.  相似文献   

9.
Micron-sized polystyrene or PS particles were first prepared by dispersion polymerization. Then a series of polystyrene/poly(styrene-2-hydroxyethyl methacrylate) or PS/P(S-HEMA) composite polymer particles was prepared by seeded copolymerization using different amounts of 2-hydroxyethyl methacrylate (HEMA) at the constant core/shell ratio of 1/0.5. The produced PS seed and composite polymer particles were characterized by transmission electron microscopy. Adsorption behaviors of some biologically active macromolecules were studied under similar conditions. In each case the magnitude of adsorption on composite polymer particles decreased with the increase in HEMA content in the recipe, which means that the hydrophobic interaction between the surface of the particles and biomolecules decreased. The specific activities of trypsin aqueous solution and adsorbed trypsin on PS seed and composite polymer particles prepared with different HEMA contents were also measured and compared. The activity of adsorbed trypsin on composite polymer particles improved significantly with the incorporation of hydrophilic HEMA.  相似文献   

10.
Advances in colloidal synthesis allow for the design of particles with controlled patches. This article reviews routes towards colloidal locomotion, where energy is consumed and converted into motion, and its implementation with active patchy particles. A special emphasis is given to phoretic swimmers, where the self-propulsion originates from an interfacial phenomenon, raising experimental challenges and opening up opportunities for particles with controlled anisotropic surface chemistry and novel behaviors.  相似文献   

11.
12.
13.
A mode coupling theory for the ideal glass transition temperature, or crossover temperature to highly activated dynamics in the deeply supercooled regime, T(c), has been developed for anisotropic polymer liquids. A generalization of a simplified mode coupling approach at the coarse-grained segment level is employed which utilizes structural and thermodynamic information from the anisotropic polymer reference interaction site model theory. Conformational alignment or/and coil deformation modifies equilibrium properties and constraining interchain forces thereby inducing anisotropic segmental dynamics. For liquid-crystalline polymers a small suppression of T(c) with increasing nematic or discotic orientational order is predicted. The underlying mechanism is reduction of the degree of coil interpenetration and intermolecular repulsive contacts due to segmental alignment. For rubber networks chain deformation results in an enhanced bulk modulus and a modest elevation of T(c) is predicted. The theory can also be qualitatively applied to systems that undergo nonuniversal local deformation and alignment, such as polymer thin films and grafted brush layers, and large elevations or depressions of T(c) are possible. Extension to treat directionally dependent collective barrier formation and activated hopping is possible.  相似文献   

14.
This review presents the recent progress in the development of active particles driven by alternating-current (AC) electrokinetic effects. These particles propel by asymmetrically dissipating the external energy provided by the fields. An AC field can trigger several electrohydrodynamic mechanisms depending on the field frequency and amplitude, which can also control particle–particle interactions and collective behavior. Recently there has been a strong focus on powering and controlling the motion of self-propelling particles with engineered shape, size, and composition. We introduce a tiered classification of AC field-driven active particles and discuss the fundamental electrohydrodynamic effects acting in individual and multi-particle systems. Finally, we address the limitations and challenges in the current state of AC-field driven engineered particles.  相似文献   

15.
We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension properties, emergent collective behavior, and transport of passive tracer particles. Recent exciting theoretical results and current debate on quantifying these complex active fluids highlight the need for conceptually simple experiments to guide our understanding.  相似文献   

16.
Femtosecond dynamics of molecular vibrations as well as cage motions in the B<--X transition of Cl2 in solid Ar have been investigated. We observed molecular vibrational wave-packet motion in experimental pump-probe spectra and an additional oscillation with a 500 fs period which is assigned to the zone-boundary phonon of the Ar crystal. The cage motion is impulsively driven by the B<--X transition due to the expansion of the electronic cloud of the chromophore. To clarify the underlying mechanism, we performed simulations based on the diatomics-in-molecules method which takes into account the different shapes of the Cl2 electronic wave function in the B and X states as well as the anisotropic interaction with the matrix. The simulation results show that Ar atom motion in the (100) plane is initiated by the electronic transition and that only those Ar atoms oscillate coherently with an approximately 500 fs period which are essentially decoupled from the molecular vibration. Their phase and time evolution are in good agreement with the experimentally observed oscillation, supporting the assignment as a displacive excitation of coherent phonons.  相似文献   

17.
A quantum nanosystem (such as a quantum dot, nanowire, superconducting nanoparticle, or superfluid nanodroplet) involves widely separated characteristic lengths. These lengths range from the average nearest-neighbor distance between the constituent fermions or bosons, or the lattice spacing for a conducting metal, to the overall size of the quantum nanosystem (QN). This suggests the wave function has related distinct dependencies on the positions of the constituent fermions and bosons. We show how the separation of scales can be used to generate a multiscale perturbation scheme for solving the wave equation. Results for electrons or other fermions show that, to lowest order, the wave function factorizes into an antisymmetric (fermion) part and a symmetric (bosonlike) part. The former manifests the short-range/exclusion-principle behavior, while the latter corresponds to collective behaviors, such as plasmons, which have a boson character. When the constituents are bosons, multiscale analysis shows that, to lowest order, the wave function can also factorize into short- and long-scale parts. However, to ensure that the product wave function has overall symmetric particle label exchange behavior, there could, in principle, be states of the boson nanosystem where both the short- and long-scale factors are either boson- or fermionlike; the latter "dual fermion" states are, due to their exclusion-principle-like character, of high energy (i.e., single particle states cannot be multiply occupied). The multiscale perturbation analysis is used to argue for the existence of a coarse-grained wave equation for bosonlike collective behaviors. Quasiparticles, with effective mass and interactions, emerge naturally as consequences of the long-scale dynamics of the constituent particles. The multiscale framework holds promise for facilitating QN computer simulations and novel approximation schemes.  相似文献   

18.
In recent years self-assembly has become progressively more “active”, i.e. the focus of research gradually has shifted towards field-manipulation of matter in order to form temporary states rather than creating static architectures. The desire for time-programmed control of materials certainly originates from the unmatched complexity of natural systems that orchestrate multiple components across length scales. Although artificial self-assembly still lacks control comparable to natural systems, there has been impressive progress in a concerted approach from physicists, chemists, biologists, and engineers. This review summarizes the current trend in colloidal assembly advancing from static assembly of isotropic particles towards active structuring of anisotropic particles with heterogeneous (patchy) surfaces, and ultimately, to complex behavior in dissipative dynamic systems. We focus both on the formation of static structures and on temporary states due to response to magnetic, electric, or optic stimulation. We give examples of nano- and microparticle assembly where the temporary state may adopt equilibrium order or a continuously changing dynamic pattern.  相似文献   

19.
A novel mesoscopic simulation method is adopted to study the ordered packing of the anisotropic disklike particles with a soft repulsive interaction, which possesses a modified anisotropic conservative force type used in dissipative particle dynamics. We examine the influence of the shape of the particles, the angular width of the repulsion, and the strength of the repulsion on the packing structures. Specifically, an ordered hexagonal columnar structure is obtained in our simulations. Our study demonstrates that an anisotropic repulsive potential between soft discoidal particles is sufficient to produce a relatively ordered hexagonal columnar structure.  相似文献   

20.
In a previous work [1] we showed that the swelling behavior of carboxylated core-shell particles (PS-PC) can be modified using a specific sample preparation route or favoring the hydrophobic attractive interaction by other way, i.e. controlling the temperature. In that paper, we found that the swelling was promoted in those particles which were initially in a highly swollen state (pH?10) while it was hindered for those particles which were not previously in this trigger pH. In this work, we present a discussion of the salt-induced swelling of the same carboxylated core-shell system (PS-PC) with two tuned swelling behaviors: the former, called A-2, exhibits promoted swelling while in the latter, called B-1, the swelling is greatly suppressed because of a compact conformation of the polymer shell is induced [1]. Good agreement between experimental, numerical and theoretical results at all pH values is obtained for promoted particles (A-2). On the other hand, the salt-induced swelling behaviors shown by hindered particles (B-1) corroborate that polymer restructuring includes assembly among ionic groups which affect their ionization degree and also the electrosteric interaction between particles. Finally, the salt-induced swelling behavior shown by the B-1 system at pH 8.6 resembles the Pincus regime predicted by scaling theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号