首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
微生物燃料电池生物阴极   总被引:1,自引:0,他引:1  
陈立香  肖勇  赵峰 《化学进展》2012,24(1):157-162
微生物燃料电池(microbial fuel cells, MFCs)利用微生物处理废水的同时产电,是一种清洁可再生能源技术。近年来新兴起的生物阴极是指阴极室中的功能微生物附着在电极表面形成生物膜,电子由电极传递给微生物并发生相应的生物电化学反应;是微生物燃料电池研究的一个重要方向。本文根据厌氧、好氧操作体系的不同将生物阴极进行分类;归纳总结了微生物组成、电极和分隔材料的研究进展,探讨了生物阴极在去除污染物和生成高附加值产品中的实际应用,并提出了其将来发展的可能方向。  相似文献   

2.
生物阴极微生物燃料电池   总被引:3,自引:0,他引:3  
传统微生物燃料电池(microbial fuel cells,MFCs)主要由生物阳极与非生物阴极组成,属于半生物燃料电池,存在化学药剂再生困难、需要铂等贵金属催化及成本高等缺陷。生物阴极则利用微生物参与阴极反应克服了这些缺陷。微生物参与MFCs阴极反应,最初在海底沉积物MFCs中被发现。为了提高空气-生物阴极的产电效率,人们进行了以铁、锰等过渡金属氧化物修饰电极材料的研究。在厌/缺氧环境中,生物阴极可将硝酸盐和硫酸盐等作为最终电子受体。对生物阴极研究的深入为MFCs工业化应用开辟了道路,此外,本文在文献综述的基础上提出了铁锰联合修饰生物阴极材料的可能性。  相似文献   

3.
生物阴极微生物燃料电池不同阴极材料产电特性   总被引:6,自引:0,他引:6  
以葡萄糖(COD初始浓度为2000 mg/L, COD为化学需氧量)为阳极燃料底物, 考察了碳纤维刷和柱状活性碳颗粒作为生物阴极微生物燃料电池(MFC)阴极材料的产电性能. 研究结果表明, 碳纤维刷MFC的启动时间比碳颗粒MFC的长, 达到稳定状态后的恒负载(300 Ω)电压(0.324 V)比碳颗粒阴极MFC的(0.581 V)低. 极化分析结果表明, 碳纤维刷MFC和碳颗粒MFC的最大功率密度分别为24.7 W/m3(117.2 A/m3)和50.3 W/m3(167.2 A/m3). 电化学交流阻抗谱(EIS)测定结果表明, 由于电极材料对微生物生长和分布状态存在不同的影响, 使得碳纤维刷阴极MFC的极化内阻大于碳颗粒阴极MFC的极化内阻.  相似文献   

4.
利用爆炸法低温合成了氮掺杂石墨烯(NG),并通过高分辨透射电子显微镜、X射线光电子能谱仪、Raman光谱仪以及X射线衍射仪对其进行了表征.电化学性能检测结果表明,所合成的NG在中性磷酸盐电解液中具有优异的氧还原催化活性,完全能够与贵重金属铂催化剂(Pt/C)相媲美,氧还原催化稳定性甚至优于Pt/C.当NG用作微生物燃料电池(MFCs)的阴极氧还原催化剂时,在外阻为1000Ω情况下,MFCs的最大功率密度为1345 mW/m2,产电稳定性优于以Pt/C为阴极催化剂的MFCs,可以成为Pt催化剂的理想替代品.  相似文献   

5.
微生物燃料电池非生物阴极催化剂的研究进展   总被引:1,自引:0,他引:1  
在微生物燃料电池(MFC)中,以氧为电子受体具有很多优点,但氧阴极还原的反应动力学慢,会造成阴极电势的损失。 因此,提高阴极对氧还原的电催化活性和降低催化剂的价格是MFC非生物阴极催化剂的研究重点之一。 本文综述了近年来MFC中非生物阴极氧还原催化剂的研究进展。 重点讨论了贵金属Pt、过渡金属大环化合物以及金属氧化物催化剂对氧还原的电催化活性。 其中,非贵金属氧化物及过渡金属大环化合物催化剂具有良好的性能,而且价格低廉,有望成为MFC非生物阴极Pt基催化剂的替代催化剂。  相似文献   

6.
构建了一个以曝气池污泥为阳极接种微生物、碳毡为阳极、无任何修饰的不锈钢网为阴极的双室微生物燃料电池. 通过输出电压、功率密度以及电化学阻抗等考察了阴极面积对电池产电性能的影响,并对电池的长期运行稳定性进行评价. 研究结果表明,不锈钢网作为微生物燃料电池的阴极性能稳定. 当不锈钢网面积为2 × 2 cm2时,最大输出电压达到0.411 V,功率密度为0.303 W•m-2,内阻841 Ω,极化内阻80 Ω. 增大阴极面积至2 × 4 cm2,最大输出电压能达到0.499 V,内阻减小至793 Ω. 不锈钢网价格便宜,具有长期运行稳定性,适宜做MFCs的阴极.  相似文献   

7.
微生物燃料电池电极材料研究进展   总被引:1,自引:0,他引:1  
次素琴  吴娜  温珍海  李景虹 《电化学》2012,18(3):243-251
微生物燃料电池以微生物为催化剂将化学能直接转化成电能,可用于废水处理并产生电能,是一种极具应用前景的生物电化学技术. 本文综述了近年来微生物燃料电池电极材料的制备、功能修饰及表面构建等的研究进展,着重介绍了炭基纳米材料的微结构与成分对微生物燃料电池性能的影响,并分析了微生物燃料电池电极材料现存的主要问题,以期不久的将来微生物燃料电池能付之实用.  相似文献   

8.
以不同载量的MnO_2/rGO和Pt/C修饰阴极电极构建了生物阴极型双室微生物燃料电池(MFC),考察了不同阴极催化剂修饰MFC对其产电性能以及老龄垃圾渗滤液主要污染物去除效果的影响。结果表明,以MnO_2/rGO修饰MFC阴极电极材料,能显著提高MFC产电性能及对老龄垃圾渗滤液中污染物去除效果;输出电压为372 mV,功率密度为194 mW/m~3(是未经催化剂修饰MFC的两倍),内阻为264Ω,化学需氧量(COD)和氨氮(NH_3-N)去除率分别为58.68%和76.64%。当MnO_2/rGO载量为.0 mg/cm~2时,MFC性能与负载Pt/C的MFC性能接近,但构建成本却明显降低。  相似文献   

9.
空气阴极生物燃料电池电化学性能   总被引:12,自引:0,他引:12  
为提高生物燃料电池(MFC)的输出功率, 降低内阻和有机物处理成本, 实验以空气电极为阴极, 泡沫镍(铁)为阳极,葡萄糖模拟废水为基质构建了直接空气阴极单室生物燃料电池, 考察了电池的电化学性能. 结果表明, MFC的开路电压为0.62 V, 内阻为33.8 Ω, 最大输出功率为700 mW·m-2 (4146 mW·m-3污水), 电子回收率20%. 放电曲线、循环伏安测试表明, MFC首次放电比容量和比能量分别为263 mAh·g-1 COD(化学需氧量)和77.3 mWh·g-1 COD, MFC充放电性能及稳定性均较好. 电化学交流阻抗谱(EIS)分析表明, 随放电时间的延长, 电池阻抗增大, 这是导致电池输出电压逐渐降低的原因之一. MFC运行8 h, COD的去除率为56.5%, 且COD的降解符合表观一级反应动力学.  相似文献   

10.
高锰酸钾作阴极的微生物燃料电池   总被引:3,自引:0,他引:3  
构建了一个以醋酸钠水溶液为阳极原料、高锰酸钾为阴极氧化剂的双室微生物燃料电池, 考察了阴极溶液浓度、阴极流动状态、外电阻和pH值等因素对电池性能的影响, 监测了电池外电压和两极电极电势的变化过程, 并分析了阴极极化的原因和限制微生物燃料电池(MFC)的关键因素. 研究结果显示: (1) MnO2在碳纸表面的沉积是阴极极化的主要原因, 而溶液流动可以明显降低极化程度; 将高锰酸钾溶解在缓冲溶液中可以进一步降低阴极H+浓差极化; (2) 根据极化曲线可以推断, 影响电池输出功率的决定性因素应是微生物代谢反应速度和微生物与电极之间的电子传递速率; (3) 随外电阻的变化, 电池输出功率出现极大值824 mW/m2, 相应外电阻为300 Ω左右, 这与通过I-V关系曲线推导得到的电池内阻(284±18) Ω相吻合; (4) pH值和高锰酸钾浓度对电池阴极电极电势的影响符合Nernst方程.  相似文献   

11.
金属离子在微生物燃料电池中的行为   总被引:1,自引:0,他引:1  
在废水处理方面,微生物燃料电池具有在净化废水的同时回收能源或有价值化学品等突出优点,已经成为人们研究的热点。在微生物燃料电池中,金属离子能直接或者间接参与阳极和阴极过程,其对溶液的电导率、反应器的内阻和功率密度、产电微生物的活性等都有重要影响。本文综述了金属离子参与微生物燃料电池的机制及其影响因素,并且介绍了微生物燃料电池在去除废水或者固体废弃物中重金属离子方面的优势和发展前景。  相似文献   

12.
杜春雨  董涛  尹鸽平  史鹏飞 《电化学》2009,15(4):412-417
应用湿化学法制备RuO2/C纳米复合物,并以其为载体借助微波法制备成Pt/RuO2/C催化剂.使用透射电镜和X射线衍射分析RuO2/C载体、Pt/RuO2/C催化剂的形貌及晶体结构;循环伏安、稳态阳极腐蚀和旋转圆盘电极等测试电化学性能.结果表明,Pt/RuO2/C催化剂具有良好的耐甲醇渗透性和稳定性,可有效延长催化剂的使用寿命.本文为探索新型高性能DMFC阴极催化剂之制备提供了一条较好的途径.  相似文献   

13.
微生物燃料电池   总被引:2,自引:0,他引:2  
刘宏芳  郑碧娟 《化学进展》2009,21(6):1349-1355
微生物燃料电池 (Microbial Fuel Cells,MFCs) 是一种利用微生物作为催化剂,将燃料中的化学能直接转化为电能的装置。本文首先简要介绍了MFCs 的发展简史和基本原理,针对MFCs 产电性能低的现状,分别从产电微生物、电池结构、质子交换膜(PEM)、电极以及电解液等方面着重综述了近几年有关提高MFCs 产电性能的研究进展。最后介绍了关于MFCs 的另一些有趣的研究方向:植物MFCs,生物阴极MFCs,以及污水脱氮和有毒废水处理。  相似文献   

14.
采用电泳沉积技术将LiCoO2和CeO2两种纳米颗粒同时沉积至多孔镍基阴极表面,获得一种新型复合基体阴极材料——LiCoO2-CeO2-Ni。研究了其在模拟熔融碳酸盐燃料电池(MCFC)工作条件下的形变/溶解行为,并对其实验前后的表面进行了详细分析。结果表明,与传统多孔镍基阴极相比,新基体阴极材料在模拟MCFC启动及运行条件下形变微小,镍溶出速率低。材料表面所修饰的纳米颗粒薄层对镍基体包覆致密且与之形成稳定新相,从而有效抑制了材料的形变和溶解。  相似文献   

15.
Microbial fuel cells (MFCs) are an environmentally friendly technology and a source of renewable energy. It is used to generate electrical energy from organic waste using bacteria, which is an effective technology in wastewater treatment. The anode and the cathode electrodes and proton exchange membranes (PEM) are important components affecting the performance and operation of MFC. Conventional materials used in the manufacture of electrodes and membranes are insufficient to improve the efficiency of MFC. The use of nanomaterials in the manufacture of the anode had a prominent effect in improving the performance in terms of increasing the surface area, increasing the transfer of electrons from the anode to the cathode, biocompatibility, and biofilm formation and improving the oxidation reactions of organic waste using bacteria. The use of nanomaterials in the manufacture of the cathode also showed the improvement of cathode reactions or oxygen reduction reactions (ORR). The PEM has a prominent role in separating the anode and the cathode in the MFC, transferring protons from the anode chamber to the cathode chamber while preventing the transfer of oxygen. Nanomaterials have been used in the manufacture of membrane components, which led to improving the chemical and physical properties of the membranes and increasing the transfer rates of protons, thus improving the performance and efficiency of MFC in generating electrical energy and improving wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号