首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

2.
3.
单原子催化剂作为一种原子尺度的催化剂,在制氢、CO氧化及光催化等领域均具有广阔的应用前景。大量实验结果和理论计算证实了金属单原子和载体之间的相互作用,及由两者之间电荷转移引起的电子结构改变是单原子催化剂具有高的选择性和催化活性的主要原因。本文着重综述了近年来共沉淀法、化学还原法及浸渍法所制备单原子催化剂的催化性能,并进行展望。  相似文献   

4.
单原子催化是提高贵金属利用率的有效手段,而表征单原子催化剂是理解单原子催化的基础.探针分子红外光谱可用于识别和定量催化剂样品中孤立的Pt族金属物种的浓度,从而得到负载的孤立的Pt族金属物种的局部几何形状、稳定性、活性及其分散性.本文讨论了该技术用于识别和表征含负载型孤立的Pt族金属原子催化剂的效能、应用、以及未来的发展方向.  相似文献   

5.
近年来,单原子催化剂因其较高的催化活性和选择性等优点而受到了人们的广泛关注.我们综述了以C,Si,Ti,Al为基底的单原子催化剂的制备方法,并对以不同材料基底制备单原子催化剂的制备方法、形成机理及优势特点进行了比较.通过对单原子制备、表征方法及催化活性的概述,以期对制备单原子催化剂提供一定的借鉴和指导.研究表明,单原子...  相似文献   

6.
Titania (TiO2) has been among the most widely investigated and used metal oxides over the past years, as it has various functional applications. Extensive research into TiO2 and industrial interest in this material have been triggered by its high abundance, excellent corrosion resistance, and low cost. To improve the activity of TiO2 in heterogeneous catalytic reactions, noble metals are used to accelerate the reactions. However, in the case of nanoparticles supported on TiO2, the active sites are usually limited to the peripheral sites of the noble metal particles or at the interface between the particle and the support. Thus, highly dispersed single metal atoms are desired for the effective utilization of precious noble metals. The study of oxide-supported isolated atoms, the so-called single-atom catalysts (SACs), was pioneered by Zhang's group. The high dispersion of precious noble metals results helps reduce the cost associated with catalyst preparation. Because of the presence of active centers as single atoms, the deactivation of metal atoms during the reaction, e.g., by coking for large agglomerates, is retarded. The unique coordination environment of the noble metal center provides special sites for the reaction, consequently increasing the selectivity of the reaction, including the enantioselectivity and stereoselectivity. Hence, supported SACs can bridge homogenous and heterogeneous reactions in solution as they provide selective reaction sites and are recyclable. Moreover, owing to the high site homogeneity of the isolated metal atoms, SACs are ideal models for establishing the structure-activity relationships. The present review provides an overview of recent works on the synthesis, characterization, and photocatalytic applications of SACs (Pt1, Pd1, Ir1, Rh1, Cu1, Ru1) supported on TiO2. The preparation of single atoms on TiO2 includes the creation of surface defective sites, surface modification, stabilization by high-temperature shockwave treatment, and metal-ligand self-assembly. Conventional characterization methods are categorized as microscopic imaging and spectroscopic methods, such as aberration-corrected scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), extended X-ray absorption fine structure analysis (EXAFS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). We attempted to address the critical factors that lead to the stabilization of single-metal atoms on TiO2, and elucidate the mechanism underlying the photocatalytic hydrogen evolution and CO2 reduction. Although many fascinating applications of TiO2-supported SACs in photocatalysis could only be addressed superficially and in a referencing manner, we hope to provide interested readers with guidelines based on the wide literature, and more specifically, to provide a comprehensive overview of TiO2-supported SACs.  相似文献   

7.
二维材料限域单原子催化剂研究进展   总被引:1,自引:0,他引:1  
近年来,单一原子或单一位点催化剂因其独特的结构和电子特性受到催化研究人员的广泛关注.目前,多种无机固体材料被用作限域该类单原子催化剂,包括传统的金属氧化物、沸石分子筛以及金属有机框架配合物等.载体的性质会显著地影响单原子的催化性能,因此具有独特物理化学性质的二维材料无疑是限域单原子的一类理想介质,并逐渐引起了人们在该领域的研究兴趣.二维材料兴起于石墨烯的成功剥离,随后其他类似物如氮化硼、氮化碳以及二硫化钼等蓬勃发展起来.结构简单明确且性质独特的二维材料自身就是一类新颖的催化剂,其与单原子的结合将会为催化带来更多新的可能.二维材料限域单原子催化剂的潜在优势如下:(1)二维材料独特的电子结构对单原子中心的电子特性有显著的调变作用,使其催化性能更为独特;(2)二维材料通常具有巨大的比表面积,这允许其锚定更多的单原子从而显著提高其活性位密度;(3)单原子层二维材料有利于反应物分子从双向接触其表面限域的单原子位点,增加碰撞几率并降低传质阻力;(4)二维材料限域单原子催化剂可被视为理想的模型催化剂,其结构均一的活性中心有利于催化剂构效关系的研究;(5)二维材料限域的单原子能够反过来促进或激活二维材料的本征催化活性.在这里,我们总结了二维材料限域单原子催化剂的最新进展,其中二维材料主要涉及石墨烯、氮化碳和硫化钼.我们围绕在二维材料限域单原子催化剂中什么是真正的活性位点及其如何协同催化等问题进行了讨论,进而展望了二维材料限域单原子催化剂的应用前景和挑战.  相似文献   

8.
由于良好的催化活性和稳定性,贵金属催化剂已经被广泛应用于各种异相催化反应中,但是贵金属的稀有性和高成本无法满足未来日益增长的催化需求.2011年,张涛课题组成功地制备了高效、稳定的铂单原子催化剂.高效的单原子催化剂利用单个活性位点作为催化活性中心,可能会成为连接同相催化和异相催化的桥梁.然而从经济适用的长远角度考虑,将非贵金属催化剂缩小到原子尺度是否也会展现出优良的催化活性;是否有潜力替代目前已被广泛应用的贵金属催化剂?虽然现阶段非贵金属催化剂的催化性能仍无法达到贵金属催化剂的标准,但是已有相关研究从理论和实验上报道了非贵金属单原子催化剂及其优异的性能表明了其在未来发展中极其重要,因而,可以预见这两个疑问的答案都是肯定的.单原子概念的出现不仅为提高贵金属的催化性能及成本的降低指明了方向,同时也为制备具有高催化活性、甚至可与贵金属催化剂相媲美的非贵金属催化剂提供了可能性.我们在上述背景下,阐述了对单原子的概念日益加深的机制认知,并从理论和实验上概述了非贵金属单原子催化剂近期的发展情况,指出了目前的在单原子催化剂领域需要解决的一些问题,最后,针对研究现状,我们对未来单原子的发展提出了相应的展望.单原子催化剂具有较高的表面能,因而,如何寻找合适的基体与单原子相互作用,进而,使基体材料像一只手一样稳固地"抓紧"单原子,因而,降低其高表面能则是发挥优良催化性能的基础.强金属–基体相互作用(SMSI)不仅可以将单原子限制在基体表面,亦会影响整个催化过程.目前应用于单原子催化剂的基体种类很多,如金属氧化物、金属以及其他材料,而对SMSI认知则主要分两大类,一类是源自于基体表面的结构缺陷,另一类是源于其电子缺陷.从目前的发展状况来看SMSI机制仍有很多疑惑尚未解决,例如对电子转移影响的认知等.理论研究表明,在某些反应中非贵金属单原子展示出可替代贵金属的催化性质.比如,在一氧化碳优先反应(PROX)中,单原子钴和钛展示出的催化性能可与贵金属相媲美;理论计算同样证明单原子镍在一氧化碳还原中的催化活性比单原子铱优秀,甚至与单原子铂类似.大量的实验进展也报道了非贵金属单原子同样能在其他反应中展现出优异的性能,如氧析出反应(OER)、氢析出反应(HER)和氧还原反应(ORR).对于单原子催化剂,还有很多问题需要我们去解决,例如基体对于催化过程的具体影响、非贵金属的电子结构对于其催化性能的影响,以及单原子在基体上产生相互作用的位点等问题.纵然有许多问题需要更加深入的研究,但是单原子概念的出现,使得非贵金属催化剂材料取代传统贵金属催化剂成为了可能.  相似文献   

9.
基于电化学反应的能源储存与转化技术为全球能源结构的转型提供了一条绿色、 可持续的途径, 高效的电催化剂在其中扮演着重要的角色. 得益于在物理、 化学性质上的独特优势, 单原子催化剂在电催化能源转化方面展现出巨大的应用前景. 本文综合评述了单原子催化剂的合成及其能源电催化应用的研究进展, 介绍了单原子催化剂的常见表征手段, 总结了单原子催化剂的合成方法(湿化学法、 高温热解法、 原子沉积法、 电化学沉积法等), 并介绍了该类材料在氧还原、 二氧化碳电还原、 电解水及氮气电还原反应中的研究进展, 重点探讨了催化剂微观结构与其性能之间的关系, 最后, 对单原子能源电催化领域所面临的挑战进行了总结, 并对该领域未来的发展方向进行了展望.  相似文献   

10.
燃料电池的阳极抗中毒研究是重要课题,探索具有超高质量活性和抗CO毒化的阳极催化剂具有显著的科学意义和应用价值。本文成功制备了Ir原子级别分散在N掺杂碳的载体上的新催化剂,并且发现该Ir-N-C对甲酸具有良好的电催化氧化性能,其质量比活性为商业Pd/C的48倍。组装了燃料电池单电池进行测试,结果显示,Ir-N-C催化剂在单电池中的质量比功率密度高达281 mW/mg,较商业Pd/C催化剂提升了3倍。同时,Ir-N-C对CO毒化的耐受性大大增强,经过14000 s的长期测试后,其活性仅衰减68%,优于商业Pd/C催化剂(衰减85%)。并且,该催化剂能够简单有效的大批量制备,为单原子催化剂的大批量制备提供了新思路。  相似文献   

11.
Due to excellent performance properties such as strong activity and high selectivity, single-atom catalysts have been widely used in various catalytic reactions. Exploring the application of single-atom catalysts and elucidating their reaction mechanism has become a hot area of research. This article first introduces the structure and characteristics of single-atom catalysts, and then reviews recent preparation methods, characterization techniques, and applications of single-atom catalysts, including their application potential in electrochemistry and photocatalytic reactions. Finally, application prospects and future development directions of single-atom catalysts are outlined.  相似文献   

12.
景远聚  康淳  林延欣  高杰  王新波 《化学进展》2022,34(11):2373-2385
单原子催化剂具有高原子利用率、高催化活性和高选择性等优点,兼具了均相催化剂“独立活性位点”和非均相催化剂“易循环利用”的特点,有效解决贵金属昂贵稀少的缺陷。其中载体不仅能影响单原子的稳定性,还影响其电子结构,从而影响催化性能。作为一种新型二维无机材料,MXene具有比表面积大、带隙可调、导电性好和螯合位丰富等特点,是制备单原子催化剂的理想载体材料。本文简要总结了MXene的结构特点,综述了MXene基单原子催化剂的制备策略,并着重介绍了MXene基单原子催化剂在电化学能源转换领域的应用,包括析氢反应、氧电极反应、氮还原反应、二氧化碳还原反应,以及在电池储能方面的应用。最后,总结了当前MXene基单原子催化剂在研究和实用方面所面临的挑战与机遇。  相似文献   

13.
Synthesis of well-defined atomically mixed alloy nanoparticles on desired substrates is an ultimate goal for their practical application. Herein we report a general approach for preparing atomically mixed AuPt, AuPd, PtPd, AuPtPd NAs(nanoalloys) through single-atom level manipulation. By utilizing the ubiquitous tendency of aggregation of single atoms into nanoparticles at elevated temperatures, we have synthesized nanoalloys on a solid solvent with CeO2 as a carrier and transition-metal single atoms as an intermediate state. The supported nanoalloys/CeO2 with ultra-low noble metal content (containing 0.2 wt % Au and 0.2 wt % Pt) exhibit enhanced catalytic performance towards complete CO oxidation at room temperature and remarkable thermostability. This work provides a general strategy for facile and rapid synthesis of well-defined atomically mixed nanoalloys that can be applied for a range of emerging techniques.  相似文献   

14.
Noble metal single-atom catalysts (NM-SACs) anchored at novel graphene-like supports has attracted enormous interests. Gas sensitivity, catalytic activity, and d-band centers of single NM (Pt and Pd) atoms at graphenylene (graphenylene-NM) are investigated using first-principle calculations. The adsorption geometries of gas reactants on graphenylene-NM sheets are analyzed. It is found that the adsorption energies of reactant species on graphenylene-Pt are larger than those on graphenylene-Pd, because the d-band center of the Pt atom is closeser to the Fermi level. The NO and CO oxidation reactions on graphenylene-NM are investigated via four catalytic mechanisms, including Langmuir-Hinshelwood (LH), Eley-Rideal (ER), New ER (NER), and termolecular ER (TER). The results show that the NO and CO oxidations via LH and TER mechanisms can occur owing to the relatively small energy barriers. Moreover, the interaction of 2NO+2CO via ER mechanism is the energetically more favorable reaction. Although the NO oxidation via the NER mechanism has rather low energy barriers, the reaction is unlikely to occur due to the low adsorption energy of O2 compared with CO and NO. This research may provide guidance for exploring the catalytic performance of SACs on graphene-like materials to remove toxic gas molecules.  相似文献   

15.
A general graphene quantum dot-tethering design strategy to synthesize single-atom catalysts (SACs) is presented. The strategy is applicable to different metals (Cr, Mn, Fe, Co, Ni, Cu, and Zn) and supports (0D carbon nanosphere, 1D carbon nanotube, 2D graphene nanosheet, and 3D graphite foam) with the metal loading of 3.0–4.5 wt %. The direct transmission electron microscopy imaging and X-ray absorption spectra analyses confirm the atomic dispersed metal in carbon supports. Our study reveals that the abundant oxygenated groups for complexing metal ions and the rich defective sites for incorporating nitrogen are essential to realize the synthesis of SACs. Furthermore, the carbon nanotube supported Ni SACs exhibits high electrocatalytic activity for CO2 reduction with nearly 100 % CO selectivity. This universal strategy is expected to open up new research avenues to produce SACs for diverse electrocatalytic applications.  相似文献   

16.
Single-atom catalysts (SACs) have attracted extensive attention owing to their high catalytic activity. The development of efficient SACs is crucial for applications in heterogeneous catalysis. In this article, the geometric configuration, electronic structure, stabilitiy and catalytic performance of phosphorene (Pn) supported single metal atoms (M=Ru, Rh, Pd, Ir, Pt, and Au) have been systematically investigated using density functional theory calculations and ab initio molecular dynamics simulations. The single atoms are found to occupy the hollow site of phosphorene. Among the catalysts studied, Ru-decorated phosphorene is determined to be a potential catalyst by evaluating adsorption energies of gaseous molecules. Various mechanisms including the Eley-Rideal (ER), Langmuir-Hinshelwood (LH) and trimolecular Eley-Rideal (TER) mechanisms are considered to validate the most favourable reaction pathway. Our results reveal that Ru−Pn exhibits outstanding catalytic activity toward CO oxidation reaction via TER mechanism with the corresponding rate-determining energy barrier of 0.44 eV, making it a very promising SAC for CO oxidation under mild conditions. Overall, this work may provide a new avenue for the design and fabrication of two-dimensional materials supported SACs for low-temperature CO oxidation.  相似文献   

17.
Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.  相似文献   

18.
In this work, a series of non-noble metal single-atom catalysts of Mo2CS2-MXene for CO2 reduction were systematically investigated by well-defined density-functional-theory (DFT) calculations. It is found that nine types of transitional metal (TM) supported Mo2CS2 (TM-Mo2CS2) are very stable, while eight can effectively inhibit the competitive hydrogen evolution reaction (HER). After comprehensively comparing the changes of free energy for each pathway in CO2 reduction reaction (CO2RR), it is found that the products of TM-Mo2CS2 are not completely CH4. Furthermore, Cr-, Fe-, Co- and Ni-Mo2CS2 are found to render excellent CO2RR catalytic activity, and their limiting potentials are in the range of 0.245–0.304 V. In particular, Fe-Mo2CS2 with a nitrogenase-like structure has the lowest limiting potential and the highest electrocatalytic activity. Ab initio molecular dynamics (AIMD) simulations have also proven that these kinds of single-atom catalysts with robust performance could exist stably at room temperature. Therefore, these single TM atoms anchored on the surface of MXenes can be profiled as a promising catalyst for the electrochemical reduction of CO2.  相似文献   

19.
Co single-atom catalysts (SACs) with good aqueous solubility and abundant labelling functional groups were prepared in Co/Fe bimetallic metal-organic frameworks by a facile solvothermal method without high-temperature calcination. In contrast to traditional chemiluminescence (CL) catalysts, Co SACs accelerated decomposition of H2O2 to produce a large amount of singlet oxygen (1O2) rather than superoxide (O2.−) and hydroxyl radical (OH.). They were found to dramatically enhance the CL emission of the luminol-H2O2 reaction by 1349 times, and, therefore, were employed as very sensitive signal probes for conducting CL immunoassay of cardiac troponin I. The detection limit of the target analyte was as low as 3.3 pg mL−1. It is the first time that employment of SACs for boosting CL reactions has been validated. The Co SACs can also be employed to trace other biorecognition events with high sensitivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号