首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic nitroxides effectively protect cells, tissues, isolated organs, and laboratory animals from radical-induced damage. The present study focuses on the kinetics and mechanisms of the reactions of piperidine and pyrrolidine nitroxides with thiyl radicals, which are involved in free radical "repair" equilibria, but being strong oxidants can also produce cell damage. Thiyl radicals derived from glutathione, cysteine, and penicillamine were generated in water by pulse radiolysis, and the rate constants of their reactions with 2,2,6,6-tetramethylpiperidine-1-oxyl (TPO), 4-OH-TPO, and 3-carbamoyl-proxyl were determined to be (5-7) x 10 (8) M (-1) s (-1) at pH 5-7, independent of the structure of the nitroxide and the thiyl radical. It is suggested that the reaction of nitroxide (>NO (*)) with thiyl radical (RS (*)) yields an unstable adduct (>NOSR). The deprotonated form of this adduct decomposes via heterolysis of the N-O bond, yielding the respective amine (>NH) and sulfinic acid (RS(O)OH). The protonated form of the adduct decomposes via homolysis of the N-O bond, forming the aminium radical (>NH (*+)) and sulfinyl radical (RSO (*)), which by subsequent reactions involving thiol and nitroxide produce the respective amine and sulfonic acid (RS(O) 2OH). Nitroxides that are oxidized to the respective oxoammonium cations (>N (+)O) are recovered in the presence of NADH but not in the presence of thiols. This suggests that the reaction of >N (+)O with thiols yields the respective amine. Two alternative mechanisms are suggested, where >N (+)O reacts with thiolate (RS (-)) directly generating the adduct >NOSR or indirectly forming >NO (*) and RS (*), which subsequently together yield the adduct >NOSR. Under physiological conditions the adduct is mainly deprotonated, and therefore nitroxides can detoxify thiyl radicals. The proposed mechanism can account for the protective effect of nitroxides against reactive oxygen- and nitrogen-derived species in the presence of thiols.  相似文献   

2.
Stable nitroxide radicals are potent antioxidants and are among the most effective non-thiol radioprotectants, although they react with hydroxyl radicals more slowly than typical phenolic antioxidants or thiols. Surprisingly, the reduced forms of cyclic nitroxides, cyclic hydroxylamines, are better reductants yet have no radioprotective activity. To clarify the reason for this difference, we studied the kinetics and mechanisms of the reactions of nitroxides and their hydroxylamines with (*)OH radicals and with OH-adducts by using pulse radiolysis, fluorimetric determination of phenolic radiation products, and electron paramagnetic resonance spectrometric determination of nitroxide concentrations following radiolysis. Competition kinetics with phenylalanine as a reference compound in pulse radiolysis experiments yielded rate constants of (4.5 +/- 0.4) x 10(9) M(-1) s(-1) for the reaction of (*)OH radical with 2,2,6,6-tetramethylpiperidine-N-oxyl (TPO), 4-hydroxy-TPO (4-OH-TPO), and 4-oxo-TPO (4-O-TPO), (3.0 +/- 0.3) x 10(9) M(-1) s(-1) for deuterated 4-O-TPO, and (1.0 +/- 0.1) x 10(9) M(-1) s(-1) for the hydroxylamine 4-OH-TPO-H. The kinetic isotope effect suggests the occurrence of both (*)OH addition to the aminoxyl moiety of 4-O-TPO and H-atom abstraction from the 2- or 6-methyl groups or from the 3- and 5-methylene positions. This conclusion was further supported by final product analysis, which demonstrated that (*)OH partially oxidizes 4-O-TPO to the corresponding oxoammonium cation. The rate constants for the reactions of the nitroxides with the OH-adducts of phenylalanine and terephthalate have been determined to be near 4 x 10(6) M(-1) s(-1), whereas the hydroxylamine reacted at least 50 times slower, if at all. These findings indicate that the reactivity toward (*)OH does not explain the differences between the radioprotective activities of nitroxides and hydroxylamines. Instead, the radioprotective activity of nitroxides, but not of hydroxylamines, can be partially attributed to their ability to detoxify OH-derived secondary radicals.  相似文献   

3.
The detection and characterization of radicals in biomolecules are challenging due to their high reactivity and low concentration. Mass spectrometry (MS) provides a tool for the unambiguous identification of protein-based radicals by exploiting their reactivity with suitable reagents. To date, protein-radical detection by MS has been modeled after electron paramagnetic resonance experiments, in which diamagnetic spin traps, such as 3,5-dibromo-4-nitrosobenzene sulfonic acid, convert unstable radicals to more stable spin adducts. Since MS detects mass changes, and not unpaired spins, conversion of radicals to stable diamagnetic adducts is more desirable. The use of 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO(*)) in the MS identification of protein-based radicals was explored here to establish whether scavenging via radical combination would give rise to TEMPO adducts that were stable to MS analysis. The horseradish peroxidase/H(2)O(2) reaction was used to generate radicals in derivatives of tyrosine, tryptophan, and phenylalanine as models of protein-based radicals. TEMPO(*) was added as a radical scavenger, and the products were analyzed by electrospray ionization (ESI) MS. Dramatically higher mass-adduct yields were obtained using radical scavenging vs radical trapping, which greatly enhanced the sensitivity of radical detection. The efficiency of TEMPO(*) in protein radical scavenging was examined in horse heart myoglobin and cytochrome c peroxidase (CCP) from Saccharomyces cerevisiae. On H(2)O(2) binding to their ferric hemes, two oxidizing equivalents are transferred to the proteins as an Fe(IV)=O species and a polypeptide-based radical. In addition, CCP has been shown to reduce up to 10 equiv of H(2)O(2) using endogenous donors, thereby generating as many as 20 radicals on its polypeptide. Following myoglobin and CCP incubation with a 10-fold molar excess of H(2)O(2) and TEMPO(*), matrix-assisted laser desorption ionization (MALDI) time-of-flight analysis of the tryptic peptides derived from the proteins revealed 1 and 9 TEMPO adducts of myoglobin and CCP, respectively. Given the high scavenging efficiency of TEMPO(*) and the stability of TEMPO-labeled peptides in ESI and MALDI sources, scavenging by stable nitroxide radicals coupled with MS analysis should provide sensitive and powerful technology for the characterization of protein-based radicals.  相似文献   

4.
A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore's usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H(2)O(2)-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially "light up" in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.  相似文献   

5.
When polymeric materials doped with nitroxides of the 2,2,6,6-tetramethylpiperidine type are exposed to light, the nitroxide concentration decreases. The two mechanisms for the decrease of the nitroxide are the reaction of nitroxide with free radicals produced during photolysis of the polymer to form amino ethers and the abstraction of hydrogen atoms by excited-state nitroxides to form hydroxyl amines. Excited-state nitroxides can be formed in two ways: by direct absorption and by energy transfer. In this paper, the effect of energy transfer on the rate of decay of the nitroxide signal is studied, and measurements of nitroxide decay are used to probe energy transfer in crosslinked polymeric coatings. A simple kinetic scheme is used to interpret nitroxide decay during photolysis of both solutions and polymers containing benzophenone. These results are used to show that the slope of the line relating nitroxide decay rate to nitroxide concentration is essentially determined by energy transfer from a coating-based chromophore to nitroxide. The nitroxide decay assay is also used to study the effectiveness of a benzotriazole ultraviolet light absorber as a quencher.  相似文献   

6.
Tikhonov  I. V.  Borodin  L. I.  Sen  V. D.  Pliss  E. M. 《Russian Chemical Bulletin》2020,69(11):2097-2100

Kinetics of the reduction of nitroxides with cysteine in the presence of a source of superoxide radicals was studied. The reactivity of nitroxides in this process is determined by the reduction potential of the N-oxoammonium cation / nitroxide pair. The rate-limiting step of the reaction is the nitroxide oxidation by the hydroperoxyl radical to the N-oxoammonium cation.

  相似文献   

7.
Stable nitroxides are potential antioxidant drugs. In this study, we have linked nitroxide (Tempol) to phenol with the aim of improving radioprotective activity. The radical scavenging activities of four Tempol–phenol conjugates were evaluated in L-02 and MCF-7 cells survival assays. A differential protection in normal cells as compared to tumor cells was confirmed. In addition, the protective effect of these compounds was demonstrated in a greater increase in peripheral WBC, ANC, AMC, and platelet counts in an in vivo rat model. It might be possible to develop them into a possible agent for radical injury.  相似文献   

8.
A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.  相似文献   

9.
In this communication we propose a novel application for prefluorescent probes in the detection of free carbon-centered radicals in enzymatic processes. Prefluorescent probes combine a fluorescent moiety tethered to a paramagnetic nitroxide that acts as a fluorescence quencher. Trapping of a radical by the nitroxide group restores the fluorescence properties. The increase in fluorescence intensity with time reflects the formation and quenching of carbon-centered radicals and can be used for the quantitative evaluation of yields and kinetics. As a test system we used horseradish peroxidase, an oxidoreductase that is widely accepted to operate by a radical-mediated mechanism. We used the prefluorescent probe (quinoline-TEMPO), where a quinoline moiety has been tethered to 2,2,6,6-tetramethylpiperidin-1-oxyl.  相似文献   

10.
The interaction of the nitroxide radical traps (Tempo and Dmpo) and radicals produced in the electrophilic fluorination of olefins (styrene and alpha-methylstyrene) and Selectfluor (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octanebis(tetrafluoroborate) (F-TEDA-BF(4)) (1)) was investigated by electrospray ionization mass spectrometry (ESI-MS). Tempo succeeded in intercepting the radical cationic intermediates and the radical adduct ions were detected at m/z 260 (for styrene) and m/z 274 (for alpha-methylstyrene). Dmpo could also intercept the fluorine radical and radical adduct ions were detected at m/z 131, 132 and 152. The interception of the radical cationic intermediates and fluorine radical is good evidence for the presence of a single-electron transfer mechanism in the electrophilic fluorination.  相似文献   

11.
Reactions of differently substituted phenyl radicals with components of nucleic acids have been investigated in the gas phase. A positively charged group located meta with respect to the radical site was employed to allow manipulation of the radicals in a Fourier-transform ion cyclotron resonance mass spectrometer. All of these electrophilic radicals react with sugars via exclusive hydrogen atom abstraction, with adenine and uracil almost exclusively via addition (likely at the C8 and C5 carbons, respectively), and with the nucleoside thymidine by hydrogen atom abstraction and addition at C5 in the base moiety (followed by elimination of (*)CH(3)). These findings parallel the reactivity of the phenyl radical with components of nucleic acids in solution, except that the selectivity for addition is different. Like HO(*), the electrophilic charged phenyl radicals appear to favor addition to the C5-end of the C5-C6 double bond of thymine and thymidine, whereas the phenyl radical preferentially adds to C6. The charged phenyl radicals do not predominantly add to thymine, as the neutral phenyl radical and HO(*), but mainly react by hydrogen atom abstraction from the methyl group (some addition to C5 in the base followed by loss of (*)CH(3) also occurs). Adenine appears to be the preferred target among the nucleobases, while uracil is the least favored. A systematic increase in the electrophilicity of the radicals by modification of the radicals' structures was found to facilitate all reactions, but the addition even more than hydrogen atom abstraction. Therefore, the least reactive radicals are most selective toward hydrogen atom abstraction, while the most reactive radicals also efficiently add to the base. Traditional enthalpy arguments do not rationalize the rate variations. Instead, the rates reflect the radicals' electron affinities used as a measure for their ability to polarize the transition state of each reaction.  相似文献   

12.
Novel profluorescent nitroxides bearing a triazole linker between the coumarin fluorophore and an isoindoline nitroxide were prepared in good yields using the copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction (CuAAC). Nitroxides containing 7-hydroxy and 7-diethylamino substitution on their coumarin rings displayed significant fluorescence suppression, and upon reaction with methyl radicals, normal fluorescence emission was returned. The fluorescence emission for the 7-hydroxycoumarin nitroxide and its diamagnetic analogue was found to be strongly influenced by pH with maximal fluorescence emission achieved in basic solution. Solvent polarity was also shown to affect fluorescence emission. The significant difference in fluorescence output between the nitroxides and their corresponding diamagnetic analogues makes these compounds ideal tools for monitoring processes involving free-radical species.  相似文献   

13.
Fourier‐transform ion cyclotron resonance mass spectrometry has been used to examine gas‐phase reactions of four different nitroxide free radicals with eight positively charged pyridyl and phenyl radicals (some containing a Cl, F, or CF3 substituent). All the radicals reacted rapidly (near collision rate) with nitroxides by radical–radical recombination. However, some of the radicals were also able to abstract a hydrogen atom from the nitroxide. The results establish that the efficiency (kreaction/kcollision) of hydrogen atom abstraction varies with the electrophilicity of the radical, and hence is attributable to polar effects (a lowering of the transition‐state energy by an increase in its polar character). The efficiency of the recombination reaction is not sensitive to substituents, presumably due to a very low reaction barrier. Even so, after radical–radical recombination has occurred, the nitroxide adduct was found to fragment in different ways depending on the structure of the radical. For example, a cationic fragment was eliminated from the adducts of the more electrophilic radicals via oxygen anion abstraction by the radical (i.e., the nitroxide adduct cleaves heterolytically), whereas adducts of the less electrophilic radicals predominantly fragmented via homolytic cleavage (oxygen atom abstraction). Therefore, differences in the product branching ratios were found to be attributable to polar factors. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 216–229 2004  相似文献   

14.
Recent development in controlled radical polymerization has provided a tool to combine a relatively robust radical polymerization technique with structural control. This contribution focuses on stable free radical polymerization in the presence of nitroxides. The influence of 2,2,6,6‐tetramethyl‐piperidine‐N‐oxyl (TEMPO) and temperature on the copolymerization of styrene and acrylonitrile will be discussed. In the second part a new class of nitroxide stable free radicals will be presented that shows enhanced performance in styrene polymerizations.  相似文献   

15.
The synthesis of a new structural class of isoindoline nitroxides (aminoxyls), accessible via the palladium-catalysed Heck reaction, is presented. Reaction of the aryl bromoamine, 5-bromo-1,1,3,3-tetramethylisoindoline (4) or dibromoamine, 5,6-dibromo-1,1,3,3-tetramethylisoindoline (5) or the analogous bromonitroxides 6 and 7 with methyl acrylate gives the acrylate substituted tetramethylisoindoline amines 8 and 10 and nitroxides 12 and 14. Similarly, the reaction of the aryl bromides and dibromides 4-7 with methyl 4-vinylbenzoate gives the carboxystyryl substituted tetramethylisoindoline amines 9 and 11 and the analogous nitroxides 13 and 15. The carboxystyryl tetramethylisoindoline nitroxides demonstrate strongly suppressed fluorescence, which is revealed upon removal of the free radical by reduction or radical coupling.  相似文献   

16.
将4-羟基-2,2,6,6-四甲基哌啶氮氧自由基用于标记9-羧基-吖啶,得到自旋标记荧光探针4-(9-吖啶酯)-2,2,6,6-四甲基哌啶氮氧自由基. 以谷胱甘肽作为蛋白质肽模型,研究了活性氧过氧亚硝酸诱导其损伤产生的硫中心自由基的荧光表征. 自旋标记荧光探针为弱荧光物质,当与硫中心自由基作用后,导致其荧光增强,从而可对硫中心自由基进行表征.  相似文献   

17.
The group frequency of the N-O radical stretching vibration has received scant attention in the literature. The few existing treatments of the vibrational spectroscopy of nitroxides are incomplete at best and potentially misleading to workers in the field. To close this gap in the available knowledge, the existing literature on the vibrational spectra of nitroxide stable free radicals is critically reviewed with particular reference to the wavenumber position of the N-O stretching vibration, nu(N-O). Poor evidentiary bases for the assignment nu(N-O) were found in many instances. Ab initio Density Field Theory calculations using a model chemistry of UB3LYP at the 6-311++G(d,p) level were performed to obtain a theoretical band position of nu(N-O) for comparison with the published data. Large discrepancies between the theoretical and experimental values were found for the radical 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxyl, which currently sets the lower limit of the accepted wavenumber range of nu(N-O), as well as for the nitronyl and iminyl nitroxides. The wavenumber position of nu(N-O) was found to occur in the range 1450-1420cm(-1) for 5-membered cyclic nitroxides and 1395-1340cm(-1) for 6-membered cyclic and acyclic nitroxides. In nitronyl nitroxides, the symmetric stretching vibration occurs in the region 1470cm(-1), but coupling to other modes makes specific band assignments problematic for the nitronyl nitroxide group.  相似文献   

18.
The rate constants of recombination, k X, of propagating radicals with nitroxides in pseudoliving radical polymerization are determined via the competitive-inhibition method with the use of ESR spectroscopy. This method is applicable to determination of k X in the reactions of propagating radicals of styrene, acrylic acid, and methyl methacrylate with two stable radicals, the nitroxide diethylphosphono-2,2-dimethylpropyl nitroxide and the phenoxide galvinoxyl. The values of k X determined at 50°C increase in the following sequence: diethylphosphono-2,2-dimethylpropyl nitroxide-TEMPO-galvinoxyl. The selectivity of the low-activity propagating radicals of styrene in reactions with stable radicals is shown.  相似文献   

19.
Halogen-bonded complexes between aliphatic and aromatic iodoperfluorocarbons and persistent nitroxide radicals have been detected by ESR spectroscopy in solution. Quantitative data indicate that nitroxides behave as strong electron donors in halogen bonding, giving rise to interactions whose strength is close to that of strong hydrogen bonds. These results point to a novel design of supramolecular paramagnetic species.  相似文献   

20.
Rates of peroxidation of human LDL and rates of consumption of the LDL's alpha-tocopherol (TocH) have been measured at 37 degrees C. Peroxidation was initiated by radicals generated in the aerated aqueous phase at known rates by thermal decomposition of appropriate precursors: superoxide (O2(*-)/HOO(*)) from a hyponitrite and alkylperoxyls (ROO(*), two positively charged, one negatively charged and one neutral) from azo compounds. The efficiencies of escape from the solvent cage of the geminate pair of neutral carbon-centered radicals was found to be 0.1, but it was 0.5 for the three charged radicals, a result attributed to radical/radical Coulombic repulsion within the cage. All four alkylperoxyls initiated and terminated tocopherol-mediated peroxidation (TMP) with about equal efficiency and essentially all of these radicals that were generated were consumed in these two reactions. TMP is a radical chain process, and when initiated by the alkylperoxyls, the rate of LDL peroxidation was faster in the early stages while TocH was present than later, after all of this "antioxidant" had been consumed. In contrast, only about 3-4% of the generated superoxide radicals reacted in any measurable fashion with TocH-containing LDL at pH's from 7.6 to 6.5 and peroxidation was much slower than with a similar rate of generation of alkylperoxyls. After all the TocH had been consumed, LDL peroxidation was negligible at pH 7.6 and 7.4, but at pH 6.8 and 6.5, the peroxidation rates showed a large increase over the rates while the TocH had been present. That is, endogenous TocH behaves as an antioxidant in LDL subjected to attack by the physiologically relevant superoxide radical, whereas TocH behaves as a prooxidant in LDL subjected to attack by the probably far less physiologically important alkylperoxyls. Rates of LDL peroxidation initiated by superoxide increased as the pH was decreased, and the results are consistent with the initiation of peroxidation of fresh LDL occurring via H-atom abstraction from TocH by HOO(*) to form the Toc(*) radical and termination by reaction of O2(*-) with Toc(*), a process that occurs partly by addition leading to TocH consumption and partly by electron plus proton transfer leading to the regeneration of TocH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号