首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this note, the author proves that the inverse problem of submodular function on digraphs with l∞ objective function can be solved by strongly polynomial algorithm. The result shows that most inverse network optimization problems with l∞ objective function can be solved in the polynomial time.  相似文献   

2.
We consider submodular programs which are problems of minimizing submodular functions on distributive lattices with or without constraints. We define a convex (or concave) conjugate function of a submodular (or supermodular) function and show a Fenchel-type min-max theorem for submodular and supermodular functions. We also define a subgradient of a submodular function and derive a necessary and sufficient condition for a feasible solution of a submodular program to be optimal, which is a counterpart of the Karush-Kuhn-Tucker condition for convex programs. This work is supported by the Alexander von Humboldt fellowship (1982/83), West Germany.  相似文献   

3.
A greedy algorithm solves the problem of maximizing a linear objective function over the polyhedron (called the submodular polyhedron) determined by a submodular function on a distributive lattice or a ring family. We generalize the problem by considering a submodular function on a co-intersecting family and give an algorithm for solving it. Here, simple-minded greedy augmentations do not work any more and some complicated augmentations with multiple exchanges are required. We can find an optimal solution by at most 1/2n(n – 1) augmentations, wheren is the number of the variables and we assume a certain oracle for computing multiple exchange capacities.  相似文献   

4.
We present cutting plane algorithms for the inverse mixed integer linear programming problem (InvMILP), which is to minimally perturb the objective function of a mixed integer linear program in order to make a given feasible solution optimal.  相似文献   

5.
This paper considers the following inverse optimization problem: given a linear program, a desired optimal objective value, and a set of feasible cost vectors, determine a cost vector such that the corresponding optimal objective value of the linear program is closest to the desired value. The above problem, referred here as the inverse optimal value problem, is significantly different from standard inverse optimization problems that involve determining a cost vector for a linear program such that a pre-specified solution vector is optimal. In this paper, we show that the inverse optimal value problem is NP-hard in general. We identify conditions under which the problem reduces to a concave maximization or a concave minimization problem. We provide sufficient conditions under which the associated concave minimization problem and, correspondingly, the inverse optimal value problem is polynomially solvable. For the case when the set of feasible cost vectors is polyhedral, we describe an algorithm for the inverse optimal value problem based on solving linear and bilinear programming problems. Some preliminary computational experience is reported.Mathematics Subject Classification (1999):49N45, 90C05, 90C25, 90C26, 90C31, 90C60Acknowledgement This research has been supported in part by the National Science Foundation under CAREER Award DMII-0133943. The authors thank two anonymous reviewers for valuable comments.  相似文献   

6.
U. Faigle and W. Kern have recently extended the work of their earlier paper and of M. Queyranne, F. Spieksma and F. Tardella and have shown that a dual greedy algorithm works for a system of linear inequalities with {:0,1}-coefficients defined in terms of antichains of an underlying poset and a submodular function on the set of ideals of the poset under some additional condition on the submodular function.?In this note we show that Faigle and Kern’s dual greedy polyhedra belong to a class of submodular flow polyhedra, i.e., Faigle and Kern’s problem is a special case of the submodular flow problem that can easily be solved by their greedy algorithm. Received: February 1999 / Accepted: December 1999?Published online February 23, 2000  相似文献   

7.
We propose a generalization of the inverse problem which we will call the adjustment problem. For an optimization problem with linear objective function and its restriction defined by a given subset of feasible solutions, the adjustment problem consists in finding the least costly perturbations of the original objective function coefficients, which guarantee that an optimal solution of the perturbed problem is also feasible for the considered restriction. We describe a method of solving the adjustment problem for continuous linear programming problems when variables in the restriction are required to be binary.  相似文献   

8.
9.
一个优化问题的逆问题是这样一类问题,在给定该优化问题的一个可行解时,通过最小化目标函数中参数的改变量(在某个范数下)使得该可行解成为改变参数后的该优化问题的最优解。对于本是NP-难问题的无容量限制设施选址问题,证明了其逆问题仍是NP-难的。研究了使用经典的行生成算法对无容量限制设施选址的逆问题进行计算,并给出了求得逆问题上下界的启发式方法。两种方法分别基于对子问题的线性松弛求解给出上界和利用邻域搜索以及设置迭代循环次数的方式给出下界。数值结果表明线性松弛法得到的上界与最优值差距较小,但求解效率提升不大;而启发式方法得到的下界与最优值差距极小,极大地提高了求解该逆问题的效率。  相似文献   

10.
研究带次模惩罚的优先设施选址问题, 每个顾客都有一定的服务水平要求, 开设的设施只有满足了顾客的服务水平要求, 才能为顾客提供服务, 没被服务的顾客对应一定的次模惩罚费用. 目标是使得开设费用、连接费用与次模惩罚费用之和最小. 给出该问题的整数规划、 线性规划松弛及其对偶规划. 基于原始对偶和贪婪增广技巧, 给出该问题的两个近似算法, 得到的近似比分别为3和2.375.  相似文献   

11.
By means of elementary arguments we first show that the gradient of the objective function of a convex program is constant on the solution set of the problem. Furthermore the solution set lies in an affine subspace orthogonal to this constant gradient, and is in fact in the intersection of this affine subspace with the feasible region. As a consequence we give a simple polyhedral characterization of the solution set of a convex quadratic program and that of a monotone linear complementarity problem. For these two problems we can also characterize a priori the boundedness of their solution sets without knowing any solution point. Finally we give an extension to non-smooth convex optimization by showing that the intersection of the subdifferentials of the objective function on the solution set is non-empty and equals the constant subdifferential of the objective function on the relative interior of the optimal solution set. In addition, the solution set lies in the intersection with the feasible region of an affine subspace orthogonal to some subgradient of the objective function at a relative interior point of the optimal solution set.  相似文献   

12.
考虑带次模惩罚和随机需求的设施选址问题,目的是开设设施集合的一个子集,把客户连接到开设的设施上并对没有连接的客户进行惩罚,使得开设费用、连接费用、库存费用、管理费用和惩罚费用之和达到最小. 根据该问题的特殊结构,给出原始对偶3-近似算法. 在算法的第一步,构造了一组对偶可行解;在第二步中构造了对应的一组原始整数可行解,这组原始整数可行解给出了最后开设的设施集合和被惩罚的客户集合. 最后,证明了算法在多项式时间内可以完成,并且算法所给的整数解不会超过最优解的3倍.  相似文献   

13.
逆优化问题是指通过调整目标函数和约束中的某些参数使得已知的一个解成为参数调整后的优化问题的最优解.本文考虑求解一类逆鲁棒优化问题.首先,我们将该问题转化为带有一个线性等式约束,一个二阶锥互补约束和一个线性互补约束的极小化问题;其次,通过一类扰动方法来对转化后的极小化问题进行求解,然后利用带Armijo线搜索的非精确牛顿法求解每一个扰动问题.最后,通过数值实验验证该方法行之有效.  相似文献   

14.
The classical multi-set split feasibility problem seeks a point in the intersection of finitely many closed convex domain constraints, whose image under a linear mapping also lies in the intersection of finitely many closed convex range constraints. Split feasibility generalizes important inverse problems including convex feasibility, linear complementarity, and regression with constraint sets. When a feasible point does not exist, solution methods that proceed by minimizing a proximity function can be used to obtain optimal approximate solutions to the problem. We present an extension of the proximity function approach that generalizes the linear split feasibility problem to allow for non-linear mappings. Our algorithm is based on the principle of majorization–minimization, is amenable to quasi-Newton acceleration, and comes complete with convergence guarantees under mild assumptions. Furthermore, we show that the Euclidean norm appearing in the proximity function of the non-linear split feasibility problem can be replaced by arbitrary Bregman divergences. We explore several examples illustrating the merits of non-linear formulations over the linear case, with a focus on optimization for intensity-modulated radiation therapy.  相似文献   

15.
Given a finite ground set N and a value vector ${a \in \mathbb{R}^N}$ , we consider optimization problems involving maximization of a submodular set utility function of the form ${h(S)= f \left(\sum_{i \in S} a_i \right ), S \subseteq N}$ , where f is a strictly concave, increasing, differentiable function. This utility function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, for instance, in risk-averse capital budgeting under uncertainty, competitive facility location, and combinatorial auctions. These problems can be formulated as linear mixed 0-1 programs. However, the standard formulation of these problems using submodular inequalities is ineffective for their solution, except for very small instances. In this paper, we perform a polyhedral analysis of a relevant mixed-integer set and, by exploiting the structure of the utility function h, strengthen the standard submodular formulation significantly. We show the lifting problem of the submodular inequalities to be a submodular maximization problem with a special structure solvable by a greedy algorithm, which leads to an easily-computable strengthening by subadditive lifting of the inequalities. Computational experiments on expected utility maximization in capital budgeting show the effectiveness of the new formulation.  相似文献   

16.
We propose a polynomial-time-delay polynomial-space algorithm to enumerate all efficient extreme solutions of a multi-criteria minimum-cost spanning tree problem, while only the bi-criteria case was studied in the literature. The algorithm is based on the reverse search framework due to Avis and Fukuda. We also show that the same technique can be applied to the multi-criteria version of the minimum-cost basis problem in a (possibly degenerated) submodular system. As an ultimate generalization, we propose an algorithm to enumerate all efficient extreme solutions of a multi-criteria linear program. When the given linear program has no degeneracy, the algorithm runs in polynomial-time delay and polynomial space. To best of our knowledge, they are the first polynomial-time delay and polynomial-space algorithms for the problems.  相似文献   

17.
Abstract. In this paper,a new model for inverse network flow problems,robust partial inverseproblem is presented. For a given partial solution,the robust partial inverse problem is to modify the coefficients optimally such that all full solutions containing the partial solution becomeoptimal under new coefficients. It has been shown that the robust partial inverse spanning treeproblem can be formulated as a combinatorial linear program,while the robust partial inverseminimum cut problem and the robust partial inverse assignment problem can be solved by combinatorial strongly polynomial algorithms.  相似文献   

18.
In this paper we consider the quadratic knapsack problem which consists in maximizing a positive quadratic pseudo-Boolean function subject to a linear capacity constraint. We propose a new method for computing an upper bound. This method is based on the solution of a continuous linear program constructed by adding to a classical linearization of the problem some constraints rebundant in 0–1 variables but nonredundant in continuous variables. The obtained upper bound is better than the bounds given by other known methods. We also propose an algorithm for computing a good feasible solution. This algorithm is an elaboration of the heuristic methods proposed by Chaillou, Hansen and Mahieu and by Gallo, Hammer and Simeone. The relative error between this feasible solution and the optimum solution is generally less than 1%. We show how these upper and lower bounds can be efficiently used to determine the values of some variables at the optimum. Finally we propose a branch-and-bound algorithm for solving the quadratic knapsack problem and report extensive computational tests.  相似文献   

19.
In various penalty/smoothing approaches to solving a linear program, one regularizes the problem by adding to the linear cost function a separable nonlinear function multiplied by a small positive parameter. Popular choices of this nonlinear function include the quadratic function, the logarithm function, and the x ln(x)-entropy function. Furthermore, the solutions generated by such approaches may satisfy the linear constraints only inexactly and thus are optimal solutions of the regularized problem with a perturbed right-hand side. We give a general condition for such an optimal solution to converge to an optimal solution of the original problem as the perturbation parameter tends to zero. In the case where the nonlinear function is strictly convex, we further derive a local (error) bound on the distance from such an optimal solution to the limiting optimal solution of the original problem, expressed in terms of the perturbation parameter.  相似文献   

20.
Inverse multi-objective combinatorial optimization consists of finding a minimal adjustment of the objective functions coefficients such that a given set of feasible solutions becomes efficient. An algorithm is proposed for rendering a given feasible solution into an efficient one. This is a simplified version of the inverse problem when the cardinality of the set is equal to one. The adjustment is measured by the Chebyshev distance. It is shown how to build an optimal adjustment in linear time based on this distance, and why it is right to perform a binary search for determining the optimal distance. These results led us to develop an approach based on the resolution of mixed-integer linear programs. A second approach based on a branch-and-bound is proposed to handle any distance function that can be linearized. Finally, the initial inverse problem is solved by a cutting plane algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号