首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用浸渍法制备了CuO/TiO_2负载型催化剂,并将其用于CO2加氢制甲醇反应。重点考察了铜的负载量对催化剂性能的影响,并对其物化性能和催化性能之间的关系进行了讨论。结果发现,随着铜负载量的增加,催化剂中金属铜的比表面先增加后减小,当铜的负载量为10%(质量百分数)时达到最大值。催化剂的表面碱性位数量随铜含量的增加持续减小,中等碱位和强碱位的强度下降。当铜的负载量不高于10%时,CO2的转化率与铜的比表面积呈线性关系。甲醇选择性与催化剂的表面碱位性质有关,过强的碱性位会降低甲醇选择性。  相似文献   

2.
1-Phenylethanol transformation over several oxide catalysts (MgO, MgO-B2O3, ZrO2, AlPO4-SiO2 and a Spanish sepiolite of Vallecas) was used as test reaction to determine their acid-basic properties. Different kinds of surface sites are proposed for dehydration and dehydrogenation processes. Thus, strong basic sites are related to the dehydrogenation process while both weak acid and basic sites are responsible for that of dehydration.  相似文献   

3.
采用浸渍法制备了CuO/TiO2负载型催化剂,并将其用于CO2加氢制甲醇反应。重点考察了铜的负载量对催化剂性能的影响,并对其物化性能和催化性能之间的关系进行了讨论。结果发现,随着铜负载量的增加,催化剂中金属铜的比表面先增加后减小,当铜的负载量为10%(质量百分数)时达到最大值。催化剂的表面碱性位数量随铜含量的增加持续减小,中等碱位和强碱位的强度下降。当铜的负载量不高于10%时,CO2的转化率与铜的比表面积呈线性关系。甲醇选择性与催化剂的表面碱位性质有关,过强的碱性位会降低甲醇选择性。  相似文献   

4.
Low-temperature (T = 80 K) interaction of the sublimed layers of meso-mono-4-pyridyltriphenylporphyrinatoiron(ii) (FeMPyTPP) with dioxygen was studied by IR and electronic absorption spectroscopies. Unlike the meso-tetraphenylporphyrinatoiron(ii) (FeTPP) layers, coordination of O2 with FeMPyTPP produces extra-complexes of two types: in the first complex one of the axial sites is free, while in the second complex an axial site is occupied by the pyridine group of the adjacent molecule. The results obtained indicate self-assembly of the FeMPyTPP molecules through coordination bonds between the iron atom and pyridine group of the adjacent molecule in the layer. The bonding of O2 by the sublimed FeMPyTPP layers differs substantially from that by the FeTPP layers, which rapidly loose their ability of oxygen bonding at room temperature.  相似文献   

5.
Correlations involving bond lengths and bond angles in the molecular structure of the Cu4OCl6(4-Mepy)4 complex (4-Mepy = 4-methylpyridine) with four symmetrically independent molecules present in the unit cell showed that the donor-acceptor behavior involving the π-back donation into the pyridine rings of the 4-Mepy ligands is most effectively stimulated by a suitable orientation of the pyridine rings in the trigonal bipyramidal geometry. The pyridine ring planes are almost in parallel orientation with one of the three Cu-Cl bonds. The bond lengths of these Cu-Cl bonds are in a significant linear correlation with the Cu-N bond lengths and the bonds lengths of the pyridine rings. The pyridine rings orientation is affected by distortion of the trigonal bipyramidal geometry to tetragonal pyramidal coordination, by out-of plane pyridine rings deviation and in-plane pyridine rings tilting, by puckering of the pyridine rings and by the effects of the methyl groups. The pyridine rings in at least seven of the sixteen trigonal bipyramidal coordinations exhibit an orientation supporting the π-back bonding between the Cu(II) atoms and the pyridine rings.  相似文献   

6.
A detailed mechanistic study of the hydroxylation of alkane C? H bonds using H2O2 by a family of mononuclear non heme iron catalysts with the formula [FeII(CF3SO3)2(L)] is described, in which L is a tetradentate ligand containing a triazacyclononane tripod and a pyridine ring bearing different substituents at the α and γ positions, which tune the electronic or steric properties of the corresponding iron complexes. Two inequivalent cis‐labile exchangeable sites, occupied by triflate ions, complete the octahedral iron coordination sphere. The C? H hydroxylation mediated by this family of complexes takes place with retention of configuration. Oxygen atoms from water are incorporated into hydroxylated products and the extent of this incorporation depends in a systematic manner on the nature of the catalyst, and the substrate. Mechanistic probes and isotopic analyses, in combination with detailed density functional theory (DFT) calculations, provide strong evidence that C? H hydroxylation is performed by highly electrophilic [FeV(O)(OH)L] species through a concerted asynchronous mechanism, involving homolytic breakage of the C? H bond, followed by rebound of the hydroxyl ligand. The [FeV(O)(OH)L] species can exist in two tautomeric forms, differing in the position of oxo and hydroxide ligands. Isotopic‐labeling analysis shows that the relative reactivities of the two tautomeric forms are sensitively affected by the α substituent of the pyridine, and this reactivity behavior is rationalized by computational methods.  相似文献   

7.
Studies on Thoria Catalysts. II. On the Influences of Surfacechemical Properties Tho2-Catalysts on the Selective Dehydration of 2-Butanol Acid and basic properties as well as the interaction of 2-butanol with the surfaces of some ThO2catalysts were studied. Sites of low acidity and basic sites of medium strength were found on the catalysts. After CO2 adsorption we have shown by i.r. spectroscopy the formation of monodentate and bidentate carbonate as well as hydrocarbonate. There were indications of Lewis-type acid sites. Bands of alcoxide and carboxylate structure were observed in the i.r. spectra by interaction with 2-butanol and thoria. A mechanism is proposed for dehydration of 2-butanol.  相似文献   

8.
In this study, NaX synthetic zeolite was modified by following the conventional cation exchange method at 70°C. 82, 81, 79 and 48% of sodium were exchanged with Li+, K+, Ca2+ and Ce3+, respectively. Thermal analysis data obtained by TG/DSC was used to evaluate the dehydration behavior of the zeolites. The strongest interaction with water and the highest dehydration enthalpy (ΔH) value were found for Li-exchanged form and compared with the other forms. The temperature required for complete dehydration increased with decreasing cation size (cation size: K+>Ce3+>Ca2+>Na+>Li+). CO2 adsorption at 5 and 25°C was also studied and the virial model equation was used to analyze the experimental data to calculate the Henry’s law constant, K o and isosteric heat of adsorption at zero loading Q st. K o values decreased with increasing temperature and the highest Qst was obtained for K rich zeolite. It was observed that both dehydration and CO2 adsorption properties are related to cation introduced into zeolite structure.  相似文献   

9.
The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissociation. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH^*, which reacted with adsorbed CO subsequently via CO^*+OH^* → CO2^*+H^*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO on the surface via CO^*+2H^* → CH^*+OH^*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.  相似文献   

10.
A study was conducted to describe and quantify how substitution of the divalent cation and interlayer charge compensating anions affect the CO2 adsorptive capacity of various hydrotalcite-like compounds (HTlcs). Physical and chemical properties of the HTlcs were evaluated using a number of methods and the CO2 adsorption rate and capacity were measured at elevated temperature (603 K). The results showed that the synthetic analogue of the naturally occurring hydrotalcite mineral, [Mg0.73Al0.27(OH)2](CO3)0.13xH2O, had the best overall adsorption capacity and kinetics. The stability of the adsorption capacity was tested by subjecting the model HTlc to 10 equilibrium adsorption and desorption cycles. At the end of the cycle, the HTlc had maintained approximately sixty-five percent of its initial capacity. Temperature programmed desorption of CO2 was used to quantify the surface basicity of the various HTlcs. The results showed that the reversible physisorption portion of the CO2 isotherm was correlated to the number of surface basic sites on the HTlcs.  相似文献   

11.
Measuring the Lewis-acidic surface sites in catalysis is problematic when the material‘s surface area is very low (SBET ≤1 m2 ⋅ g−1). For the first time, a quantitative assessment of total acidic surface sites of very small surface area catalysts (MoO3 as pure and mixed with 5–30 % CdO (wt/wt), as well as CdO for comparison) was performed using a smart new probe molecule, tetrahydrofuran (THF). The results were nearly identical compared to using another commonly used probe molecule, pyridine. This audition is based on the limited values of the surface area of these samples that likely require a relatively moderate basic molecule as THF with pKb=16.08, rather than strong basic molecules such as NH3 (pKb=4.75) or pyridine (pKb=8.77). We propose mechanisms for the interaction of vapour phase molecules of THF with the Lewis-cationic Mo and Cd atoms of these catalysts. Besides, dehydration of isopropyl alcohol was used as a probe reaction to investigate the catalytic activity of these catalysts to further support our findings in the case of THF in a temperature range of 175–300 °C. A good agreement between the obtained data of sample MoO3-10 % CdO, which is characterised by the highest surface area value, the population of Lewis-acidic sites and % selectivity of propylene at all the applied reaction temperatures was found.  相似文献   

12.
The reaction mechanism that takes place in ZrSiO4-Mg Ca(CO3)2 mixtures was studied in air up to 1300°C by collecting neutron diffraction patterns during the heating ramp. Neutron diffraction intensities were used to monitor and establish the mechanism of reaction that occurs in successive stages. (a) MgCa(CO3)2 decomposition yielding MgO and CaCO3; (b) CaCO3 decomposition; (c) reactions between CaO, MgO, and ZrSiO4 involving the formation of phases such as: tetragonal-ZrO2, α-Ca2SiO4, and Ca3MgSi2O8, some of them acting as transitory phases; and (d) formation of CaZrO3. The results obtained by this technique agree with data obtained by differential thermal analysis and thermogravimetry. The final product has a porous structure, due to the release of CO2, with a very narrow pore size distribution (≈1 μm). This open-porosity can be controlled by tailoring the reaction sintering process.  相似文献   

13.
Sol-gel Cu//MgOSiO2 catalysts were prepared gelling tetraethoxysilane (TEOS), magnesium ethoxide and copper acetylacetonate at pH 3 and pH 9. The catalysts shown specific surface areas ca. 500 m2/g and 140 m2/g for pH 9 and pH 3 preparations respectively. Si(OH) and Si(OH)2 hydroxy groups were observed by MAS-RMN spectroscopy in both preparations. CO2-TPD and NH3-TPD desorption thermograms showed that acid and basic sites were formed on the catalysts surface. It has been found that the catalysts having the highest density of basic sites were the catalysts showing the highest activity for the CO oxidation. It is proposed that the catalytic activity depends of the relative Cu=1/Cu=2 stability given by the support acidity.  相似文献   

14.
An attempted O-alkylation of the flexible macrocycle 1with 2-(chloromethyl)pyridine in the presence of Cs2CO3 under THF reflux afforded a mixture of twoconformers of tetra-O-alkylated product 4a in a ratio of 91:9 (cone-4a:1,2-alternate-4a)in 70% yield, while other possible isomers were not observed. In the case of Na2CO3, there was no reaction product,only the starting compound 1, whereasonly monoalkylated compound 3 was obtained when usingK2CO3 as the base. The distribution of cone conformer decreased in the case of O-alkylation of tetraol 1with 4-(chloromethyl)pyridine or benzyl bromide in the presence of Cs2CO3 in comparison with that ofO-alkylation with 2-(chloromethyl)pyridine, while the 1,2-alternate conformer increased in the same sequence. The larger Cs+might increase the contribution of the metal template effect, which can hold the 2-pyridylmethyl group(s) and theoxide group(s) on the same side of the tetrathiacalix[4]arene 1 through the cation-O- and -N-interaction in the caseof O-alkylation of tetraol 1 with 2-(chloromethyl)pyridine.Only when the template metal can hold the 2-pyridyl group(s) andthe oxide group(s) on the same side of the tetrathiacalix[4]arene is the conformation immobilized to thecone. The template effect of the cesium cation plays an important role in this alkylation reaction. The structuralcharacterization of these products is also discussed.The two-phase solvent extraction data indicated thattetrakis[(2-pyridylmethyl)oxy]thiacalix[4]arenes 4a show strong Ag+ affinity and a high Ag+ selectivity wasobserved for cone-4a. A good Job plot proves 1:1 coordination of cone-4a with Ag+ cation.1H-NMR titration of cone-4a with AgSO3CF3 also clearly demonstrates that a 1:1complex is formed with retention of the original symmetry. In contrast, the 1,2-alternate-4a can form a 2:1 metal/thiacalix[4]arene complex and the two metal-binding sites display positive allostericity. The conformational changes ofpyridine moiety from the original outward orientation of the ring nitrogen to the inside orientation toward thethiacalixarene cavity were observed in the processof Ag+ complexation.  相似文献   

15.
Simultaneous tuning of permanent porosity and modulation of magnetic properties by postsynthetic modification (PSM) with light in a metal–organic framework is unprecedented. With the aim of achieving such a photoresponsive porous magnetic material, a 3D photoresponsive biporous framework, MOF1, which has 2D channels occupied by the guest 1,2‐bis(4‐pyridyl)ethylene (bpee), H2O, and EtOH molecules, has been synthesized. The guest bpee in 1 is aligned parallel to pillared bpee with a distance of 3.9 Å between the ethylenic groups; this allows photoinduced PSM of the pore surface through a [2+2] cycloaddition reaction to yield MOF2. Such photoinduced PSM of the framework structure introduces enhanced CO2 selectivity over that of N2. The higher selectivity in MOF2 than that of MOF1 is studied through theoretical calculations. Moreover, MOF2 unveils reversible changes in Tc with response to dehydration–rehydration. This result demonstrates that photoinduced PSM is a powerful tool for fabricating novel functional materials.  相似文献   

16.
采用实验与分子模拟结合的方法研究298 K下CO2在氨基改性得到的MIL-101(Cr)-NH2和MIL-101(Cr)-ED(ED:乙二胺)上的吸附性能。比较MIL-101(Cr)、MIL-101(Cr)-NH2和MIL-101(Cr)-ED的吸附等温线与吸附热的结果,表明采用直接合成改性法得到的MIL-101(Cr)-NH2比采用合成后再改性得到的MIL-101(Cr)-ED有更高的CO2吸附容量。进一步比较密度分布图和径向密度分布曲线,分析CO2在氨基改性MIL-101(Cr)中的吸附位,表明在低压下CO2首先吸附在MIL-101(Cr)微孔的超级四面体中,随着吸附压力的增大逐渐填充到更大的孔中。氨基的存在增加了CO2的吸附位点,使MIL-101(Cr)-NH2具有较高CO2吸附容量;同时MIL-101(Cr)-ED中的ED分子的存在增加了CO2的吸附位点,使MIL-101(Cr)-ED也具有较高CO2吸附容量;但是MIL-101(Cr)-ED中的ED分子占据了MIL-101(Cr)中Cr的吸附位点,使Cr对CO2的吸附强度减弱,同时可吸附位点少于MIL-101(Cr)-NH2,导致其对CO2的吸附容量少于MIL-101(Cr)-NH2。  相似文献   

17.
The title complex, [PbBr2(bipy)]n (bipy is 4,4′‐bi­pyridine, C10H8N2), was obtained by hydro­thermal reaction of Pb(O2CCH3), NaBr and bipy. The bipy group acts as a linear bifunctional bridge forming a planar {–[Pb(bipy)]–}n belt in the direction of the b axis. The remaining lead coordination sites are occupied by Br ions which link Pb centres in adjacent belts through double bridges to form extended two‐dimensional layers.  相似文献   

18.
采用实验与分子模拟结合的方法研究298 K下CO_2在氨基改性得到的MIL-101(Cr)-NH_2和MIL-101(Cr)-ED(ED:乙二胺)上的吸附性能。比较MIL-101(Cr)、MIL-101(Cr)-NH_2和MIL-101(Cr)-ED的吸附等温线与吸附热的结果,表明采用直接合成改性法得到的MIL-101(Cr)-NH_2比采用合成后再改性得到的MIL-101(Cr)-ED有更高的CO_2吸附容量。进一步比较密度分布图和径向密度分布曲线,分析CO_2在氨基改性MIL-101(Cr)中的吸附位,表明在低压下CO_2首先吸附在MIL-101(Cr)微孔的超级四面体中,随着吸附压力的增大逐渐填充到更大的孔中。氨基的存在增加了CO_2的吸附位点,使MIL-101(Cr)-NH_2具有较高CO_2吸附容量;同时MIL-101(Cr)-ED中的ED分子的存在增加了CO_2的吸附位点,使MIL-101(Cr)-ED也具有较高CO_2吸附容量;但是MIL-101(Cr)-ED中的ED分子占据了MIL-101(Cr)中Cr的吸附位点,使Cr对CO_2的吸附强度减弱,同时可吸附位点少于MIL-101(Cr)-NH_2,导致其对CO_2的吸附容量少于MIL-101(Cr)-NH_2。  相似文献   

19.
This work described the effect of 3-aminopropyltrimethoxysilane (APTMS) functionalization on the mesoporous ceria nanoparticles (MCNs) toward CO2 capture. The MCN and APTMS-loaded MCN (APTMS-MCN) were prepared by the sol-gel and impregnation method, respectively. The functionalization of APTMS on the MCN enhanced the CO2 binding sites which were observed through the formation of carbamate species from the interaction of CO2 with the NH group. This resulted to the increase of CO2 adsorption capacity of APTMS-MCN with 10-fold higher than that of pristine MCNs. For MCNs, CO2 may be adsorbed onto oxygen basic, oxygen vacant, and hydroxyl sites which further formed polydentate, monodentate, bidentate, and hydrogen carbonate species. In addition to these carbonate species, the adsorption of CO2 on APTMS-MCN has largely occurred through the formation of carbamate species which further enhanced its CO2 uptake.  相似文献   

20.
Surface tension is an important thermodynamic parameter. In researching the removal mechanism of CO2 in natural gas in supersonic expansion process, the most basic and important task is to calculate the surface tension of CO2 under low-temperature and high-pressure condition. In this paper, a comparative study on the relevant calculation methods is carried out and the computational method applied to simulate the phase transition of CO2 supersonic condensation is selected. On this basis, the CO2 surface tension calculation model is modified and the calculation method, by using the piecewise function, is proposed. The results show that the average deviation of the piecewise function is only 0.95%, which is lower than the deviation of any single correlation. It can achieve an accurate prediction of the surface tension of the liquid CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号