首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
等离子体增强CVD法沉积的微晶硅薄膜的微结构研究   总被引:1,自引:0,他引:1  
本文系统研究了PECVD法沉积μc-Si薄膜中衬低温度、氢气稀释率和射频功率等参数对μc-Si薄膜结构特性的影响.表明:随着衬低温度的增加、氢气稀释率的增大、射频功率的提高,薄膜的晶化率增大.沉积薄膜的晶化率最大可达80;,表面粗糙度大约为30nm.通过对反应过程中的能量变化进行了分析,得到反应为放热反应,且非晶结构对沉积参数比较敏感.  相似文献   

2.
VHF-PECVD制备微晶硅薄膜及其微结构表征研究   总被引:2,自引:0,他引:2  
采用VHF-PECVD技术制备了系列不同衬底温度的硅薄膜.运用微区拉曼散射(Micro-Raman)和X射线衍射(XRD)对薄膜进行了结构方面的测试分析.Micro-Raman测试结果表明:随衬底温度的升高,薄膜逐渐由非晶向微晶过渡,晶化率(Xc)逐渐增大.XRD的结果显示样品的择优取向随衬底温度的升高而变化,(220)方向计算得出样品的晶粒尺寸逐渐变大.  相似文献   

3.
本征微晶硅薄膜和微晶硅电池的制备及其特性研究   总被引:1,自引:0,他引:1  
本文对VHF-PECVD制备的本征微晶硅薄膜和电池进行了电学特性和结构特性方面的测试分析研究.电学测试结果给出制备薄膜的激活能为0.51eV,符合电池对材料的电学参数要求;拉曼散射谱测试结果计算得到样品的晶化率为63;;X射线衍射结果也证明材料晶化,同时(220)方向择优;首次在国内用VHF-PECVD方法制备出效率为5;的微晶硅电池(Jsc=21mA/cm2,Voc=0.46V,FF=51;,Area=0.253cm2).  相似文献   

4.
用甚高频等离子体化学气相沉积(VHF-PECVD)法在玻璃衬底上低温制备了不同沉积时间微晶硅薄膜.用拉曼散射光谱仪、X射线衍射(XRD)、原子力显微镜(AFM)等表征手段对薄膜的微观结构进行了研究.研究结果表明:随着沉积时间的延长,薄膜呈岛状生长,薄膜晶粒度在微晶核形成后迅速升高并逐渐饱和;其微观结构经历了"非晶相→非晶/微晶混合相→微晶相"的演变过程.本实验制备的微薄膜仍以(111)为优化取向.  相似文献   

5.
采用射频等离子增强化学气相沉积(RF-PECVD)技术在低温、高沉积压力的条件下制备微晶硅薄膜材料.在优化其它沉积参数的条件下,研究等离子功率密度对微晶硅薄膜材料微结构的影响.通过X射线衍射谱,拉曼光谱,红外吸收谱以及SEM来表征了微晶硅薄膜材料的微结构.结果显示:随着射频功率的增加,微晶硅薄膜的晶化率提高,晶粒尺度减小,薄膜呈小晶粒生长,薄膜中氢含量减少,微结构因子增加,薄膜生长表现出不均匀性.  相似文献   

6.
微晶硅薄膜纵向不均匀性的Raman光谱和AFM研究   总被引:2,自引:0,他引:2  
本文研究了采用VHF-PECVD技术制备的微晶硅薄膜的纵向均匀性.喇曼测试结果显示:微晶硅薄膜存在着生长方向的结构不均匀,随厚度的增加,材料的晶化率逐渐变大;不同衬底其非晶孵化点是不一样的,对于同一种衬底,绒度大相应的晶化率就大,对应着孵化层的厚度小;AFM测试结果明显的给出:材料的结构随厚度增加发生变化.  相似文献   

7.
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,在200℃的衬底温度下,以SiH4和GeH4为反应气体,H2和He为稀释气体,制备微晶硅锗(μc-Si Gex∶H)薄膜.结合Raman,XRF,FTIR,AFM等测试,我们分析了不同流量He的掺入对高锗含量(Ge含量~40;)μc-Si1-x Gex∶H薄膜结构性能和光电特性的影响.结果表明,随着He稀释/H2稀释(CHe/H2=He/H2)的增加,薄膜的Ge含量基本保持不变,H含量减少,致密度提高,Ge悬挂键和微结构因子先减少后增大.CHe/H2=36;时,薄膜光电特性最好.  相似文献   

8.
采用热丝化学气相沉积(HWCVD)技术,以钨丝作为热丝,在不同热丝温度和氢稀释度下,分别在玻璃和单晶硅片衬底上沉积微晶硅(μc-Si∶H)薄膜材料.对所制备的微晶硅薄膜材料使用XRD、傅里叶变换红外吸收光谱、透射谱等进行结构与性能的表征分析.结果表明,随着热丝温度升高,氢稀释度变大,薄膜呈现明显的(220)择优生长取向,晶粒尺寸逐渐增大,光学吸收边出现红移,光学带隙逐渐变小.通过优化沉积参数,在热丝温度为1577℃、氢稀释浓度为95.2;、衬底温度为350℃,沉积速率为0.6 nm/s和沉积气压8 Pa条件下,制备的微晶硅薄膜呈现出了(220)方向的高度择优生长取向,平均晶粒尺寸为146 nm,光学带隙约为1.5 eV,光电导率σ.为3.2×10-6Ω-1·cm-1,暗电导率σrd为8.6×10-7 Ω-1·cm-1,表明制备的材料是优质微晶硅薄膜材料.  相似文献   

9.
采用射频等离子体化学气相沉积(RF-PECVD)方法制备了沉积时间系列的微晶硅薄膜.采用椭圆偏振光谱仪(SE)和原子力显微镜(AFM)表征薄膜表面粗糙度,分析了表面粗糙度随沉积时间的演化行为.讨论了这两种测量手段在分析薄膜表面粗糙度时的差异.结果表明,采用SE拟合得到的表面粗糙度数值要大于采用AFM直接测量得到的结果.产生差异的原因,一是由于两种测量手段的测量机制不同;二是由于薄膜的结构不均匀导致薄膜表面形貌差异.另外,还发现这两种测量手段得到的表面粗糙度数值之间存在线性关系.  相似文献   

10.
研究了SiCl4浓度对等离子体增强化学气相沉积(PECVD)系统中以SiCl4/H2为反应气体的微晶硅薄膜生长及光电特性的影响.结果表明,微晶硅薄膜的沉积速率和晶化率均随SiCl4浓度的增加而增大,而晶粒平均尺寸在SiCl4浓度小于65;时呈增大趋势,在SiCl4浓度大于65;时呈减小趋势;此外,光照实验表明制备的微晶硅薄膜具有较稳定的微观结构,具有类稳恒光电导效应,且样品的电导率依赖于SiCl4浓度的变化.此外,还讨论了Cl基基团在微晶硅薄膜生长过程中所起的作用.  相似文献   

11.
针对氢化微晶硅薄膜吸收系数较低、制备需要较高厚度,从而需要较高沉积速度的问题,考虑到压强对沉积速度及晶化比的重要影响,在分析了单一压强法制备薄膜优缺点的基础上,提出了采用两步法来制备高质量微晶硅薄膜的方法.即先采用高压制备薄膜2min,减小非晶转微晶的孵化层厚度,然后再采用低压制备薄膜18min,提高薄膜的致密度及减小氧含量,最后制备出了光敏性较高,晶化比较大并且光照稳定性也较好的优质氢化微晶硅薄膜.  相似文献   

12.
桂全宏  佘星欣 《人工晶体学报》2012,41(3):599-604,610
采用等离子体增强化学气相沉积(PECVD)法分别在玻璃衬底和p型薄膜硅衬底上制备了微晶硅薄膜。使用拉曼谱仪、紫外-可见分光光度计、傅里叶红外光谱仪等对微晶硅薄膜进行检测,重点研究了硅烷浓度、衬底温度对薄膜沉积速率和晶化率的影响。实验结果表明:两种衬底上薄膜的沉积速率均随硅烷浓度的增大、衬底温度的升高而变大。硅烷浓度对两种衬底的薄膜晶化率影响规律相同,即均随其升高而降低;但两种衬底的衬底温度影响规律存在差别:对玻璃衬底而言,温度升高,样品晶化率减小;而p型薄膜硅衬底则在温度升高时,样品晶化率先增大后减小。此外还发现,晶化率与薄膜光学性能及含氧量存在较密切关联。  相似文献   

13.
采用激活能测试装置测量VHF-PECVD高速沉积的本征微晶硅薄膜,并对不同晶化率的样品和不同沉积功率、不同沉积压强条件下沉积制备的样品的激活能进行了分析研究.结果表明:在非晶-微晶相变域附近,激活能随着晶化率的升高而降低;随着沉积功率的增大和沉积气压的增大,沉积速率提高,样品的激活能升高,通过提高沉积功率和沉积气压可以有效的抑制氧污染.  相似文献   

14.
采用等离子增强化学气相沉积(PECVD)系统,以乙硅烷和氢气为气源,石英玻璃和单晶硅片为衬底制备了氢化非晶硅(a-Si∶ H)薄膜.采用扫描电子显微镜、X-射线衍射仪、台阶仪、紫外可见分光光度计、傅里叶变换红外光谱仪和电子能谱仪等分别表征了a-Si∶H薄膜的表面形貌、结晶特性、沉积速率,光学带隙,键合结构和Si化合态等特性.结果表明:随着衬底温度的增加,a-Si∶H薄膜表面的颗粒尺寸减小,均匀性增加,沉积速率则逐渐降低;衬底温度从80℃增加到130℃时,光学带隙显著增加,而在130℃至230℃范围内,光学带隙基本不随衬底温度变化;以SiH键对应的伸缩振动的相对峰强度逐渐增加,而以SiH2或(SiH2)n键对应的伸缩振动的相对强度逐渐减小;a-Si∶H薄膜中Si0+态的相对含量增加.因此,衬底温度大于130℃有利于制备优质a-Si∶H薄膜,230℃是沉积a-Si∶H薄膜的最佳衬底温度.  相似文献   

15.
PECVD低温制备微晶硅薄膜的研究   总被引:4,自引:0,他引:4  
实验采用等离子体增强化学气相沉积(PECVD)法在玻璃衬底上制备了微晶硅薄膜.研究了氢稀释比、衬底温度、射频功率等因素对薄膜晶化的影响,得出在一定范围内随着衬底温度的升高、射频功率和氢稀释比的增大,薄膜的晶化率得到提高;但进一步提高沉积温度、射频功率反而会使薄膜晶化效果变差,并对晶化硅薄膜低温生长的机理进行了初步的探讨.  相似文献   

16.
本文讨论了P型微晶硅薄膜性能随硅烷浓度(SC)的变化.采用X射线衍射仪(XRD),拉曼光谱仪和傅立叶变换红外吸收光谱仪(FTIR)对薄膜的结构进行了表征.随硅烷浓度的增加,微晶硅薄膜材料的生长速率和暗电导率(σd)逐渐增大,光学带隙逐渐降低.当硅烷浓度为2.0;时,硅基薄膜材料是以非晶硅为主并有散落的微晶硅颗粒的非晶硅结构.当硅烷浓度为1.5;时,硼的掺杂效率最大,同时可观察到硼抑制薄膜晶化的现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号