首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An improved cell for simultaneous electrochemical ESR based on a coaxial cylindrical cavity is described and shown to have high sensitivity whilst behaving as a satisfactory hydrodynamic electrode as evidenced by Tafel analysis, by Levich analysis and comparison with theory for the dependence of the ESR signal on electrode currents and electrolyte flow rate.  相似文献   

2.
A novel cell suitable for in-situ electrochemical ESR is described. This is based upon a wall-jet design and is shown to function as a satisfactory hydrodynamic electrode. The cell can be located within an ESR cavity without appreciable perturbation of the sensitivity of the ESR technique allowing the measurement of high quality ESR spectra of electrogenerated radicals.  相似文献   

3.
A pressure-actuated on-chip injection system has been developed that is compatible with shallow microchannels with a very large aspect ratio, i.e. 1 microm deep and up to 1000 microm wide. Such channels offer potential advantages in the miniaturisation of liquid chromatography and other separation methods as they allow high loadability and low sample dispersion at the same time. Computational fluid dynamics simulations were performed to predict the flow profiles and the transport of a sample in the system and to justify the injection principle. Based on these simulations, a prototype integrated into a chip for hydrodynamic chromatography has been realised and tested experimentally. The performance of the device is satisfactory and the results are in qualitative agreement with the numerical models.  相似文献   

4.
Tseng WL  Huang MF  Huang YF  Chang HT 《Electrophoresis》2005,26(16):3069-3075
We report the analysis of long DNA molecules by nanoparticle-filled capillary electrophoresis (NFCE) under the influences of hydrodynamic and electrokinetic forces. The gold nanoparticle (GNP)/polymer composites (GNPPs) prepared from GNPs and poly(ethylene oxide) were filled in a capillary to act as separation matrices for DNA separation. The separations of lambda-DNA (0.12-23.1 kbp) and high-molecular-weight DNA markers (8.27-48.5 kbp) by NFCE, under an electric field of -140 V/cm and a hydrodynamic flow velocity of 554 microm/s, were accomplished within 5 min. To further investigate the separation mechanism, the migration of lambda-DNA was monitored in real time using a charge-coupled device (CCD) imaging system. The GNPPs provide greater retardation than do conventional polymer media when they are encountered during the electrophoretic process. The presence of interactions between the GNPPs and the DNA molecules is further supported by the fluorescence quenching of prelabeled lambda-DNA, which occurs through an energy transfer mechanism. Based on the results presented in this study, we suggest that the electric field, hydrodynamic flow, and GNPP concentration are the three main determinants of DNA separation in NFCE.  相似文献   

5.
We demonstrate formation of long-lived cylindrical jets of a viscoelastic fluid using hydrodynamic focusing. A solution of polyacrylamide in water is driven coaxially with immiscible oil and subjected to strong extensional flow. At high flow rates, the aqueous phase forms jets that are 4-90 microm in diameter and several centimeters long. The liquid surfaces of these jets are then used as templates for assembly of microspheres into novel rigid and hollow cylinders.  相似文献   

6.
A microfluidic device is described in which an electrospray interface to a mass spectrometer is integrated with a capillary electrophoresis channel, an injector and a protein digestion bed on a monolithic substrate. A large channel, 800 microm wide, 150 microm deep and 15 mm long, was created to act as a reactor bed for trypsin immobilized on 40-60 microm diameter beads. Separation was performed in channels etched 10 microm deep, 30 microm wide and about 45 mm long, feeding into a capillary, attached to the chip with a low dead volume coupling, that was 30 mm in length, with a 50 microm i.d. and 180 microm o.d. Sample was pumped through the reactor bed at flow rates between 0.5 and 60 microL/min. The application of this device for rapid digestion, separation and identification of proteins is demonstrated for melittin, cytochrome c and bovine serum albumin (BSA). The rate and efficiency of digestion was related to the flow rate of the substrate solution through the reactor bed. A flow rate of 1 or 0.5 microL/min was found adequate for complete consumption of cytochrome c or BSA, corresponding to a digestion time of 3-6 min at room temperature. Coverage of the amino acid sequence ranged from 92% for cytochrome c to 71% for BSA, with some missed cleavages observed. Melittin was consumed within 5 s. In contrast, a similar extent of digestion of melittin in a cuvet took 10-15 min. The kinetic limitations associated with the rapid digestion of low picomole levels of substrate were minimized using an integrated digestion bed with hydrodynamic flow to provide an increased ratio of trypsin to sample. This chip design thus provides a convenient platform for automated sample processing in proteomics applications.  相似文献   

7.
A high-discernment microflow cytometer with microweir structure   总被引:1,自引:0,他引:1  
Fu LM  Tsai CH  Lin CH 《Electrophoresis》2008,29(9):1874-1880
Using a simple and reliable isotropic wet etching process, we fabricated a microflow cytometer in which cells/particles are concentrated in the center of the sample stream using a 2-D hydrodynamic focusing technique and an microweir structure. Having focused the cells/particles, they are detected and counted using a LIF method. The experimental and numerical results confirm the effectiveness of the hydrodynamic sheath flows in squeezing the cells/particles into a narrow stream in the horizontal X-Y plane. Furthermore, it is shown numerically that the microweir structure results in the separation of the cells/particles in the vertical X-Z plane such that they pass through the detection region in a sequential fashion and can therefore be counted with a high degree of precision. The experimental results obtained using fluorescent polystyrene beads with diameters of 5 and 10 microm, respectively, confirm the suitability of the proposed device for microfluidic applications requiring the high-precision counting of particles or cells within a sample flow.  相似文献   

8.
J B Edel  E K Hill  A J de Mello 《The Analyst》2001,126(11):1953-1957
This article presents a non-invasive, optical technique for measuring particulate flow within microfluidic channels. Confocal fluorescence detection is used to probe single fluorescently labeled microspheres (0.93 microm diameter) passing through a focused laser beam at a variety of flow rates (50 nL min(-1)-8 microL min(-1)). Simple statistical methods are subsequently used to investigate the resulting fluorescence bursts and generate velocity data for the flowing particles. Fluid manipulation is achieved by hydrodynamically pumping fluid through microchannels (150 microm wide and 50 microm deep) structured in a polydimethylsiloxane (PDMS) substrate. The mean fluorescence burst frequency is shown to be directly proportional to flow speed. Furthermore, the Poisson recurrence time and width of recovered autocorrelation curves is demonstrated to be inversely proportional to flow speed. The component-based confocal fluorescence detection system is simple and can be applied to a diversity of planar chip systems. In addition, velocity measurement only involves interrogation of the fluidic system at a single point along the flow stream, as opposed to more normal multiple-point measurements.  相似文献   

9.
A silica-based monolithic stationary phase prepared by the sol-gel process in a 100 microm I.D. fused-silica (FS) capillary has been modified chemically with 3-mercaptopropyl trimethoxysilane followed by immobilization of a strong cation-exchange (SCX) type chiral selector, (S)-N-(4-allyloxy-3,5-dichlorobenzoyl)-2-amino-3,3-dimethylbutane phosphonic acid, by radical addition reaction onto the reactive sulfhydryl surface. After a fine-tuning of the mobile phase composition, the enantioselective capillary column was evaluated for the separation of various chiral basic drugs by enantioselective non-aqueous capillary electrochromatography (CEC), in comparison to capillary column analogs packed with 3.5 microm silica particles having attached the same selector. The performance of the monolithic silica column was further compared to corresponding polymethacrylate-based organic polymer monoliths. The study indicated that strong counter-ions such as 2-aminobutanol or N,N,N',N'-tetramethylethylenediamine are needed, although they reduce the electroosmotic flow velocity and separation factors in comparison to less efficient counter-ions, in order to allow the elution of the oppositely charged solutes in the ion-exchange retention mode within reasonable run time and as sharp zones. In contrast, weak counter-ions such as N,N-diisopropylethylamine (Huenig base) provided stronger electroosmotic flow and much better separation factors, but relatively poor peak efficiencies. Overall, with the chemically functionalized monolithic silica column the high quality separations of packed column analogs could be approximated, with regards to both separation factors and peak performances. On the other hand, the monolithic capillary column certainly outperformed the packed column in terms of system robustness under capillary electrochromatography conditions and showed excellent column longevity. The enantioselective strong cation-exchange-type monolithic silica column performed also well in comparison to the organic polymer monolith.  相似文献   

10.
The interference of separation high voltage with the electrochemical detection is a major challenge to the microchip capillary electrophoresis-electrochemical detection systems with end-channel detection mode. Using dopamine and catechol as model analytes, the influences of channel cross-sectional area and channel-to-electrode distance on the high-voltage interference, accordingly on the separation and detection performances of the microchip capillary electrophoresis-electrochemical detection system were investigated. With the increase of the channel cross-sectional area from 312 through 450-615 microm2, the apparent half-wave potentials of hydrodynamic voltammetry for dopamine at the field strength of 288 V/cm shifted positively from 285 through 330-400 mV. By using a chip with the smallest channel cross-section (312 microm2 with top width of 37.3 microm and depth of 8.9 microm) the residual high-voltage field in the detection cell was small, so that detection was conducted at a channel-to-electrode distance of 20 microm to achieve better performances of separation and detection.  相似文献   

11.
Cao W  Liu J  Yang X  Wang E 《Electrophoresis》2002,23(21):3683-3691
A new end-column electrochemiluminescence (ECL) detection technique coupling to capillary electrophoresis (CE) is characterized. A 300 microm diameter Pt working electrode was used to directly couple with a 75 microm inner diameter separation capillary without an electric field decoupler. The hydrodynamic cyclic voltammogram (CV) of Ru(bpy) 3 2+ showed that electrophoretic current did not affect the ECL reaction. The presence of high-voltage (HV) field only resulted in the shift of the ECL detection potential. The distance of capillary to electrode was an important parameter for optimizing detection performance as it determined the characteristics of mass transport toward the electrode and the actual concentration of Ru(bpy) 3 2+ in the detection region. The optimum distance of capillary to electrode was decided by the inner diameter of the capillary, too. For a 75 microm capillary, the working electrode should be placed away from the capillary outlet at a distance within the range of 220-260 microm. The effects of pH value of ECL solution and molecular structure of analytes on peak height and theoretical plate numbers were discussed. Using the 75 microm capillary, under the optimum conditions, the method provided a linear range for tripropylamine (TPA) between 1 x 10(-10) and 1 x 10(-5) mol/L with correlation coefficient of 0.998. The detection limit (signal-to-noise ratio S/N = 3) was 5.0 x 10(-11) mol/L. The relative standard deviation in peak height for eight consecutive injections was 5.6%. By this new technique lidocaine spiked in a urine sample was determined. The method exhibited the linear range for lidocaine from 5.0 x 10(-8) to 1.0 x 10(-5) mol/L with correlation efficient of 0.998. The limit of detection (S/N = 3) was 2.0 x 10(-8) mol/L.  相似文献   

12.
Integrated continuous microfluidic liquid-liquid extraction   总被引:1,自引:0,他引:1  
We describe continuous flow liquid-liquid phase separation in microfluidic devices based on capillary forces and selective wetting surfaces. Effective liquid-liquid phase separation is achieved by using a thin porous fluoropolymer membrane that selectively wets non-aqueous solvents, has average pore sizes in the 0.1-1 microm range, and has a high pore density for high separation throughput. Pressure drops throughout the microfluidic network are modelled and operating regimes for the membrane phase separator are determined based on hydrodynamic pressure drops and capillary forces. A microfluidic extraction device integrating mixing and phase separation is realized by using silicon micromachining. Modeling of the phase separator establishes the operating limits. The device is capable of completely separating several organic-aqueous and fluorous-aqueous liquid-liquid systems, even with high fractions of partially miscible compounds. In each case, extraction is equivalent to one equilibrium extraction stage.  相似文献   

13.
A discrete-particle model of blood dynamics in capillary vessels   总被引:4,自引:0,他引:4  
We investigate the mechanism of aggregation of red blood cells (RBC) in capillary vessels. We use a discrete-particle model in 3D to model the flow of plasma and RBCs within a capillary tube. This model can accurately capture the scales from 0.001 to 100 microm, far below the scales that can be modeled numerically with classical computational fluid dynamics. The flexible viscoelastic red blood cells and the walls of the elastic vessel are made up of solid particles held together by elastic harmonic forces. The plasma is represented by a system of dissipative fluid particles. Modeling has been carried out using 1 to 3 million solid and fluid particles. We have modeled the flow of cells with vastly different shapes, such as normal and "sickle" cells. The two situations involving a straight capillary and a pipe with a choking point have been considered. The cells can coagulate in spite of the absence of adhesive forces in the model. We conclude that aggregation of red blood cells in capillary vessels can be stimulated by depletion forces and hydrodynamic interactions. The cluster of "sickle" cells formed in the choking point of the capillary efficiently decelerates the flow, while normal cells can pass through. These qualitative results from our first numerical results accord well with the laboratory findings.  相似文献   

14.
A capillary electrophoresis-electrospray mass spectrometry (CE-ESI-MS) method for the separation and determination of nine biogenic amines is proposed. Operational variables, such as the voltage, temperature, sheath liquid composition, flow-rate, and MS parameters, were optimized. Samples are injected in the hydrodynamic mode into a 75 cm x 50 microm ID coated capillary and separated by using 25 mM citric acid at pH 2.0. Heptylamine is used as internal standard. The experimental setup includes a flow manifold coupled to the CE system for automatic insertion of samples into the CE vials. The proposed method allows amines to be determined with limits of detection from 0.018 to 0.09 microg x mL(-1) and relative standard deviation (RSD) values from 2.4% to 5.0% (except 6.8% for histamine). The method was successfully used to determine biogenic amines in red and white wines.  相似文献   

15.
An in situ electrochemical electron spin resonance (ESR) study on the electro-oxidation of para-chloroaniline, para-bromoaniline, and para-iodoaniline dissolved in acetonitrile at gold electrodes is reported. ESR spectra obtained using a tubular flow cell reveal the presence of a paramagnetic dimer product derived from para-aminodiphenylamine, during oxidative electrolysis, suggesting the coupling of reactive electrogenerated radical cations with neutral parent haloaniline molecules. The ESR signal intensity behaves in a manner expected for a radical species reacting with second-order kinetics, suggesting the paramagnetic dimer is, itself, unstable. The theory describing the ESR signal intensity flow rate behavior for this reaction mechanism is developed for the tubular arrangement and used to extract mechanistic and kinetic data from the experimental results for the cases of para-chloroaniline and para-bromoaniline. Further mechanistic aspects, including proton and halide ion expulsion during dimerization, are explored voltammetrically and with the aid of digital simulations using Digisim. Comparison of the ESR signal and voltammetric measurements suggests that an additional mechanism operates which does not lead to paramagnetic products. Additionally, the in situ electrolysis of N,N-dimethyl-para-bromoaniline is reported to generate the stable radical cation of N,N,N',N'-tetramethylbenzidine, and a mechanism of electro-oxidation is, thus, proposed.  相似文献   

16.
Flow velocity profiles of micro counter-current flow of aqueous and butylacetate phases in a microchannel having a width of 100 microm were measured by micro particle image velocimetry. In order to analyze the hydrodynamic characteristics of the counter-current flow, we derived a simple analytical model for the velocity profile. When flow rates of the aqueous and organic phases were 0.2 and 0.1 microl/min, the model agreed well with the experimental results. Predictions about the velocity profile will contribute to estimation of the extraction efficiency in the co-current and counter-current extraction process.  相似文献   

17.
In this work we address the interpretation, via an ab initio integrated computational approach, of the CW-ESR spectra of the double spin labeled, 310-helical, peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe dissolved in acetonitrile. Our approach is based on the determination of geometric and local magnetic parameters of the heptapeptide by quantum mechanical density functional calculations taking into account solvent and, when needed, vibrational averaging contributions. The system is then described by a stochastic Liouville equation for the two electron spins interacting with each other and with two 14N nuclear spins, in the presence of diffusive rotational dynamics. Parametrization of the diffusion rotational tensor is provided by a hydrodynamic model. CW-ESR spectra are simulated with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing 3D structural and dynamic information on molecular systems.  相似文献   

18.
反相高效液相色谱法同时测定祛痘类化妆品中的禁用物质   总被引:2,自引:0,他引:2  
武婷  王超  李楠 《色谱》2006,24(6):589-591
建立了用反相高效液相色谱法(RP-HPLC)同时测定祛痘类化妆品中禁用物质安体舒通、过氧化苯甲酰和维A酸的含量。采用甲醇超声提取,HPLC法分离测定。3种被测物在11 min内均得到良好的分离。在1~200 mg/L范围内其浓度与峰面积呈良好的线性关系(r≥0.9999);在添加质量浓度为1~10 mg/L时,回收率为88.2%~106.7%,相对标准偏差小于3.1%;最低检出限(S/N=3)为安体舒通0.101 μg,过氧化苯甲酰0.100 μg,维A酸0.107 μg。该法简便、快速、准确,可用于祛痘类化妆品中以上3种禁用物质的检测。  相似文献   

19.
In order to understand the role that erythrocytes play in conditions such as pulmonary hypertension, in vitro mimics of the microcirculation are needed. This paper describes the use of microchip-based hydrodynamic focusing to develop a mimic that allows both mechanical deformation of erythrocytes and quantification of the adenosine triphosphate (ATP) that is subsequently released in response to this deformation. In this mimic, two sheathing streams of a luciferin/luciferase mixture are used to focus and deform a central fluid flow of an erythrocyte sample. The focusing width is changed by simply manipulating the sheath flow rate. This allows a variety of cross-sectional areas to be studied using single point chemiluminescent detection. It was shown that increasing the sheath flow rate does result in elevated levels of ATP release. For example, one sample of rabbit erythrocytes released 0.80 (+/- 0.13) microM ATP when focused to a cross-section of 3480 microm(2), while focusing the same sample to a smaller cross-section (1160 microm(2)) led to a release of 6.43 (+/- 0.40) microM ATP. In addition, two different inhibitors, diamide and glibenclamide, were used to ensure a lack of cell lysis. This approach can be used to examine a wide range of deformation forces in a high throughput fashion and will be of interest to researchers studying the mechanisms leading to vasodilation in the microvasculature.  相似文献   

20.
The simplest field flow fractionation technique, which uses the earth's gravity as the external field is applied to isolate two populations, which differ in both shape and size, from a polydisperse sub-micron TiO2 powder of homogenous density. The fraction eluted first is spherical with an average diameter of 0.31 microm while the second fraction is ellipsoidal and can be associated with a 0.45 microm hydrodynamic diameter. Elution conditions appeared to be very sensitive to electrolyte and surfactant characteristics in the carrier phase as well as on the sample concentration. Using 25 microl (1%, w/w) sample suspension, separations of spherical from ovoid particles was performed in almost 2 h with a mobile phase of 0.001 M KNO3-0.01% (v/v) Fl-70 in water in a 0.025-cm thick channel made of polystyrene walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号