首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) are a kind of novel and interesting carbon material which can be used for separation and purification. In this investigation, commercial solid‐phase microextraction (SPME) fibers (PDMS) were coated with single‐wall nanotubes (SWNTs) and multi‐wall nanotubes (MWNTs) to study their adsorption and extraction ability of proteins, and bovine fibrinogen (BFg) and bovine serum albumin (BSA) were selected as the target proteins. While MWNTs adsorbed more BFg than SWNTs, SWNTs adsorbed more BSA than MWNTs. CNTs can selectively adsorb BFg in certain conditions. The fibers coated with CNTs had advantages over traditional SPME fibers in selectivity and sensitivity. It could be used to separate BFg in bovine blood plasma and also purify BFg from it. The results show that the selectivity, sensitivity and reproducibility of this method are good for real sample analysis.  相似文献   

2.
Antibacterial effects of carbon nanotubes: size does matter!   总被引:3,自引:0,他引:3  
We provide the first evidence that the size (diameter) of carbon nanotubes (CNTs) is a key factor governing their antibacterial effects and that the likely main CNT-cytotoxicity mechanism is cell membrane damage by direct contact with CNTs. Experiments with well-characterized single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) demonstrate that SWNTs are much more toxic to bacteria than MWNTs. Gene expression data show that in the presence of both MWNTs and SWNTs, Escherichia coli expresses high levels of stress-related gene products, with the quantity and magnitude of expression being much higher in the presence of SWNTs.  相似文献   

3.
Single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) have been functionalized through the wet-mechanochemical reaction method. Results from the infrared spectrum and zeta potential measurements show that the hydroxyl groups have been introduced onto the treated SWNT and DWNT surfaces. Transmission electron microscope observations revealed that the SWNTs and DWNTs were cut short after being milled. SWNTs and DWNTs with optimized aspect ratio can be obtained by adjusting the ball milling parameters. Thermal conductivity enhancement of water-based nanofluids containing treated carbon nanotubes (CNTs) shows augmentation with the increase of temperature mainly due to the effects of an ordering liquid layer forming around the chemical surfaces of CNTs. Moreover, the thicker interfacial layer of water molecules on the surfaces of CNTs with smaller diameter, such as SWNTs, is in favor of greater thermal conductivity enhancement compared with the thinner one on the surfaces of DWNTs or MWNTs with larger diameter.  相似文献   

4.
Ring-opening surface initiated polymerization of l-proline N-carboxyanhydride was performed from amine functionalized single (SWNTs) and multi walled carbon nanotubes (MWNTs). The primary amines were grafted on the surfaces via a well-studied Diels–Alder cycloaddition. The initiator attachment helped the debundling of carbon nanotubes as shown by atomic force microscopy (AFM) studies where only small aggregates were observed. Thermogravimetric analysis revealed high wt% of grafted polyproline on the carbon nanotubes surface after the ring-opening polymerization. AFM studies showed a rather uniform layer of grafted polyproline from both MWNTs and SWNTs. The grafting of PLP on the surface was also verified by FTIR and Raman spectroscopy as well as 1H NMR in CDCl3/d-TFA. The polyproline grafted carbon nanotubes (CNTs) were readily dissolved in organic solvents in contrast to the insoluble pristine and amine-functionalized CNTs.  相似文献   

5.
An understanding of the growth mechanism of carbon nanotubes (CNTs) is very important for the control of their structures, which in turn will be the basis for their further theoretical studies and applications. On the basis of high-resolution transmission electron microscopy observations of the initial nucleation of CNTs, the following deductions are made: (1) the nucleation of single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) starts at a low-temperature zone in front of the reaction zone; (2) the addition of sulfur results in localized liquid zones on the surface of big catalyst particles as the initial nucleation sites; (3) a temperature gradient is necessary to realize the role of sulfur in the structure of CNTs; and (4) the shell number of CNTs can be changed at the nucleation and growth stages. On the basis of the above, a growth model for the formation of SWNTs and DWNTs is proposed, which might open up the possibility of controlling the structure of CNTs.  相似文献   

6.
We show that bundles of carbon nanotubes can be coiled into ring structures by controlling the contraction of their polymer shells. With the robust carbon nanotubes, we demonstrate their reversible transformation between circular and compressed rings in a colloid.  相似文献   

7.
Single-walled carbon nanotube (SWNT) bundles are selectively removed from an aqueous dispersion containing individually suspended carbon nanotubes coated with gum Arabic via interfacial trapping. The suspensions are characterized with absorbance, fluorescence, and Raman spectroscopy as well as atomic force microscopy (AFM) and rheology. The resulting aqueous suspensions have better dispersion quality after interfacial trapping and can be further improved by altering the processing conditions. A two-step extraction process offers a simple and fast approach to preparing high-quality dispersions of individual SWNTs comparable to ultracentrifugation. Partitioning of SWNTs to the liquid-liquid interface is described by free energy changes. SWNT bundles prefer to reside at the interface over individually suspended SWNTs because of greater free energy changes.  相似文献   

8.
Since their very first days, electron transfer has always played a special role in carbon nanotubes' life. In view of their structural and electronic uniqueness, carbon nanotubes have been proposed either as bulk electrode materials for sensing and biosensing in advanced electrochemical devices, or as molecular-sized electrodes for very fast electrode kinetics investigations. Alternatively, electron transfer has been used to probe the electronic properties of carbon nanotubes by either direct voltammetric inspection or coupling with spectroscopic techniques, ultimately allowing, in the case of true solutions of individual uncut single-walled carbon nanotubes (SWNTs), to single-out their redox potentials as a function of diameter. For their redox properties, as emerged from these studies, SWNTs represent unique building blocks for the construction of photofunctional nanosystems to be used in efficient light energy conversion devices.  相似文献   

9.
We propose a surface condensation method for assembling single-walled carbon nanotubes (SWNTs) on gold. The as-prepared long and randomly tangled SWNTs were cut into short pipes by chemical oxidation, allowing the nanotubes to be terminated by carboxyl functionalities. A surface condensation reaction was then performed by immersing an amino self-assembled monolayer (SAM)-modified gold substrate into the dimethylformamide suspension of carboxylic nanotubes with the aid of dicyclohexylcarbodiimide condensation agent. Raman spectroscopy and atomic force microscopy (AFM) results show that a highly aligned assembly of SWNTs has been formed on gold, with the nanotubes standing on the surface stable enough for a long ultrasonication. In combination with the microcontact printing (muCP) technique, we have fabricated patterned nanotube assemblies using this surface condensation method. Moreover, we found that the "giant" carbon nanotubes tend to form bundles on an amino-terminating surface, likely following a nucleation-growth model.  相似文献   

10.
Films of chemically shortened and functionalized single-walled carbon nanotubes (SWNTs) have been formed on a gold electrode by electrophoretic deposition. Applying ultrasonic energy resulted in dramatic changes of the film morphology; the deposited SWNT bundles reassembled and oriented normal to the electrode. Oriented SWNT bundles with high density (more than 250 bundles/microm (2)) not only presented narrow size distributions, but uniformly spread on the electrode. We discuss the mechanism of SWNT orientation by analyzing the variation in the film morphology with ultrasonication time. In addition, we suggest that the 3D displays of AFM images can lead to misjudgment of nanotube alignment. The method for aligning SWNTs normal to the electrode may be competitive with chemical vapor deposition or screen printing, the predominant methods by which vertically aligned SWNT films have been fabricated to date.  相似文献   

11.
Owing to the unique structure of zigzag (ZZ) carbon nanotubes (CNTs), their ring‐by‐ring growth behavior is different from that of chiral or armchair (AC) CNTs, on the rims of which kinks serve as active sites for carbon attachment. Through first‐principle calculations, we found that, because of the high energy barrier of initiating a new carbon ring at the rim of a ZZ CNT, the growth rate of a ZZ CNT is proportional to its diameter and significantly (10–1000 times) slower than that of other CNTs. This study successfully explained the broad experimental observation of the lacking of ZZ CNTs in CNT samples and completed the theory of CNT growth.  相似文献   

12.
Carbon nanotubes (CNTs) are anticipated as an important new material for use in nanotechnology applications because of their excellent mechanical and electrical properties. For their development, a highly stable dispersion of debundled CNTs is indispensable. Herein we present a new method to enhance dispersibility of single‐walled carbon nanotubes (SWNTs) with proteins using alcohols as co‐solvents. Addition of fluoroalcohols in solution increased the SWNT dispersion by more than one order of magnitude without protein denaturation. Enhancement of SWNT dispersion through addition of alcohols was attributed to the decreased hydrophobic interaction among SWNTs. This novel approach enables us to produce biofunctional CNTs such as one‐dimensional nanobiosensors and drug carriers that can penetrate cells.  相似文献   

13.
The latest progress of using carbon nanotubes (CNTs) for in vivo cancer nanotechnology is reviewed. CNTs can be functionalized by either covalent or non-covalent chemistry to produce functional bioconjugates for many in vivo applications. In vivo behaviors and toxicology studies of CNTs are summarized, suggesting no significant toxicity of well functionalized CNTs to the treated mice. Owing to their unique chemical and physical properties, CNTs, especially single-walled carbon nanotubes (SWNTs), have been widely used for various modalities of in vivo cancer treatment and imaging. Future development of CNT-based nanomedicine may bring novel opportunities to cancer diagnosis and therapy.  相似文献   

14.
Vertically aligned well-separated N-doped multiwalled carbon nanotubes (CNTs) were grown on a silicon substrate by plasma enhanced chemical vapor deposition (PECVD). Angular near-edge X-ray absorption fine structure (NEXAFS) was used to investigate the vertical alignment of as-grown CNTs. In addition, both individual tubes and tube bundles were characterized by high-resolution electron energy loss spectroscopy (HREELS). Simultaneous analysis of both spectroscopic techniques provides information on chemical environment, orbital orientation between carbon and heteroatoms, and local curvature effects. We demonstrate the utility of NEXAFS as an in situ probe of CNTs.  相似文献   

15.
Photoluminescence (PL) brightening is clearly observed through the direct morphology transition from isolated to thin bundled vertically- and individually freestanding single-walled carbon nanotubes (SWNTs). On the basis of the precise spectra analysis and equation-based estimation of the PL time trace, the origin of the PL brightening is consistently explained in terms of the exciton energy transfer through the tube bundles. The PL brightening is also revealed to obviously depend on SWNT diameters. Only the small-diameter rich sample can realize the PL brightening, which can be explained by the different concentrations of metallic SWNTs causing a PL quenching. Since it can be possible to fabricate brightly illuminating nanotubes on various kinds of substrates, the bundle engineering with freestanding nanotubes is expected to be a potential candidate for realizing the nanotube-based PL device fabrication.  相似文献   

16.
Single‐walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid‐state NMR spectroscopy. The uracil‐functionalized SWCNTs are able to self‐assemble into regular nanorings with a diameter of 50–70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil–uracil base‐pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.  相似文献   

17.
Previous investigations have revealed that even long carbon nanotubes (CNTs) retain bond patterns that are characterized by the localization of Clar rings. Even for CNTs with 10 nm length, an alternated, oscillating structure of Clar and Kekulé patterning was also found, indicating that these arrangements may possibly persist for even longer nanotubes, given that they are finite. In the present work, we perform a detailed and comprehensive theoretical study of this phenomenon, in order to find the causes that give rise to these patterns. A complete set of CNTs with different chiralities, diameters (up to 2 nm), lengths (up to 10 nm) and endings (capped, uncapped, and tailored endings) was considered for such purposes. The results indicate that the Clar patterning appears not only on armchair CNTs, but also on those with chiral angle values close to 30°, and this results in a stabilization of the structure, when compared with the uniform, zigzag CNTs. This stabilizing effect points to the causes that underlie the three Nakamura CNT types, resulting as the superposition of structures with a maximal number of Clar rings. Although there is a strict dependence on the border shape, the main cause of the bond patterning in long tubes is to be found in the intrinsic wrapping of each CNT, because the type and number of oscillations present in the longest structures do not depend on the particular length. Nevertheless, the three Nakamura types of armchair tubes appear to subsist beyond the appearance of oscillations, because each of these sets evolves in a different manner, and energy properties that link them together. Apart from the geometry, Clar patterning was investigated through NICS (Nucleus Independent Chemical Shifts) measures, which reveal a connection between the Clar rings and a local concentration of aromaticity.  相似文献   

18.
In this topic,we first discussed the requirement and performance of supercapacitors using carbon nanotubes(CNTs) as the electrode,including specific surface area,purity and cost.Then we reviewed the preparation technique of single walled CNTs(SWNTs) in relatively large scale by chemical vapor deposition method.Its catalysis on the decomposition of methane and other carbon source,the reactor type and the process control strategies were discussed.Special focus was concentrated on how to increase the yield,selectivity,and purity of SWNTs and how to inhibit the formation of impurities,including amorphous carbon,multiwalled CNTs and the carbon encapsulated metal particles,since these impurities seriously influenced the performance of SWNTs in supercapacitors.Wish it be helpful to further decrease its product cost and for the commercial use in supercapacitors.  相似文献   

19.
Polymer crystallization-driven, periodic patterning on carbon nanotubes   总被引:4,自引:0,他引:4  
We report herein a unique means to periodically pattern polymeric materials on individual carbon nanotubes (CNTs) using a controlled polymer crystallization method. One-dimensional (1D) CNTs were periodically decorated with polymer lamellar crystals, resulting in nano-hybrid shish-kebab (NHSK) structures. The periodicity of the polymer lamellae varies from 20 to 150 nm. The kebabs are approximately 5-10 nm thick (along CNT direction) with a lateral size of approximately 20 nm to micrometers, which can be readily controlled by varying crystallization conditions. Both polyethylene and Nylon 66 were successfully decorated on single-walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs), as well as vapor grown carbon nanofibers (CNFs). The formation mechanism was attributed to "size-dependent soft epitaxy". Because NHSK formation conditions depend on CNT structures, it further provides a unique opportunity for CNT separation. The reported method opens a gateway to periodically patterning polymers and different functional groups on individual CNTs in an ordered and controlled manner, an attractive research field that is yet to be explored.  相似文献   

20.
Here, we report a highly efficient growth of single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) on conducting metal foils. We found that foils made of Ni-based alloys with Cr or Fe serve as excellent substrates for SWNT (DWNT) synthesis. In significant contrast, a CNT grown on Ni, Fe foils contains a significant ratio of MWNTs. This result opens up an economical route for the mass production of SWNT (DWNT) forests and also enables the straightforward integration of CNTs into nanoelectronic devices, such as field emission displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号