首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amount of corn stover and wheat straw that can be sustainably collected in North Carolina was estimated to be 0.64 and 0.16 million dry t/yr, respectively. More than 80% of these crop residues are located in the coastal area. The bioethanol potential from corn stover and wheat straw was estimated to be about 238 million L (63 million gal/yr) in North Carolina. The future location of ethanol plant in North Carolina was estimated based on feedstock demand and collection radius. It is possible to have four ethanol plants with feedstock demand of 400, 450, 500, and 640 dry t/d. The collection radii for these four ethanol plants are 46, 60, 42, and 67 km (28, 37, 26, and 42 miles), respectively. The best location for a bioethanol plant includes four counties (Beaufort, Hyde, Tyrrell, and Washington) with feedstock demand of 500 t/d and collection radius about 26 mile.  相似文献   

2.
Issues of traffic congestion and community acceptance limit the size of biomass-processing plants based on truck delivery to about 2 million (M) dry t/yr or less. In this study, the cost of ethanol from an ethanol fermentation plant processing 2 M dry t/yr of corn stover supplied by truck is compared with that of larger plants in the range of 4–38 M dry t/yr supplied by a combination of trucks plus pipelines. For corn stover, a biomass source with a low yield per gross hectare, the cost of ethanol from larger plants is always higher. For wood chips from the boreal forest, a biomass source with a relatively high yield per gross hectare, a plant processing 14–38 M dry t/yr produces ethanol at a 13% reduction in cost compared with a plant producing 2 M dry t/yr supplied by truck. Processing of value-added products, such as chemicals from lignin, would be enabled by larger-scale plants.  相似文献   

3.
Ethanol from corn is produced using dry grind corn process in which simultaneous saccharification and fermentation (SSF) is one of the most critical unit operations. In this work an optimal controller based on a previously validated SSF model was developed by formulating the SSF process as a Bolza problem and using gradient descent methods. Validation experiments were performed to evaluate the performance of optimal controller under different process disturbances that are likely to occur in practice. Use of optimal control algorithm for the SSF process resulted in lower peak glucose concentration, similar ethanol yields (13.38±0.36% v/v and 13.50±0.15% v/v for optimally controlled and baseline experiments, respectively). Optimal controller improved final ethanol concentrations as compared to process without optimal controller under conditions of temperature (13.35±1.28 and 12.52±1.19% v/v for optimal and no optimal control, respectively) and pH disturbances (12.65±0.74 and 11.86±0.49% v/v for optimal and no optimal control, respectively). Cost savings due to lower enzyme usage and reduced cooling requirement were estimated to be up to $1 million for a 151 million L/yr (40 million gal/yr) dry grind plant.  相似文献   

4.
The cost of transporting wood chips by truck and by pipeline as a water slurry was determined. In a practical application of field delivery by truck of biomass to a pipeline inlet, the pipeline will only be economical at large capacity (>0.5 million dry t/yr for a one-way pipeline, and >1.25 million dry t/yr for a two-way pipeline that returns the carrier fluid to the pipeline inlet), and at medium to long distances (>75 km [one-way] and >470 km [two-way] at a capacity of 2 million dry t/yr). Mixed hardwood and softwood chips in western Canada rise in moisture level from about 50% to 67% when transported in water; the loss in lower heating value (LHV) would preclude the use of water slurry pipelines for direct combustion applications. The same chips, when transported in a heavy gas oil, take up as much as 50% oil by weight and result in a fuel that is >30% oil on mass basis and is about two-thirds oil on a thermal basis. Uptake of water by straw during slurry transport is so extreme that it has effectively no LHV. Pipeline-delivered biomass could be used in processes that do not produce contained water as a vapor, such as supercritical water gasification.  相似文献   

5.
Hominy feed is a low value ($83.7/metric ton) coproduct of the corn dry milling process that accounts for nearly 35% of the starting corn quantity. The average composition of hominy feed on a dry basis is 56.9% starch, 25.2% neutral detergent fiber, 11.1% protein, and 5.3% fat. Starch in hominy feed can be fermented to ethanol thus increasing its levels of protein and fat. The increase in protein and fat percentages may increase the market competitiveness and price of hominy feed. Hydrolysis and fermentation were performed on nine hominy feed samples collected from three corn dry milling plants in the USA. The original hominy feed samples and postfermentation solids were analyzed for starch, protein, fat, and fiber content. Compared to the original hominy feed, the percentage increase in protein, fat and fiber in postfermentation solids of nine samples ranged from 10.4 to 21.3, 6.78 to 10.6, and 12.6 to 28.7% (dry basis), respectively. Ethanol yields varied from 271.7 to 380.2 l/metric ton for the nine hominy feed samples. These results indicate that the value of hominy feed as an animal feedstock can potentially be increased with fermentation and can produce more profit per metric ton than currently being derived by its sale as a low protein feed ingredient.  相似文献   

6.
Among the available agricultural byproducts, corn stover, with its yearly production of 10 million t (dry basis), is the most abundant promising raw material for fuel ethanol production in Hungary. In the United States, more than 216 million to fcorn stover is produced annually, of which a portion also could possibly be collected for conversion to ethanol. However, a network of lignin and hemicellulose protects cellulose, which is the major source of fermentable sugars in corn stover (approx 40% of the dry matter [DM]). Steam pretreatment removes the major part of the hemicellulose from the solid material and makes the cellulose more susceptible to enzymatic digestion. We studied 12 different combinations of reaction temperature, time, and pH during steam pretreatment. The best conditions (200°C, 5 min, 2% H2SO4) increased the enzymatic conversion (from cellulose to glucose) of corn stover more then four times, compared to untreated material. However, steam pretreatment at 190°C for 5 min with 2% sulfuric acid resulted in the highest overall yield of sugars, 56.1 g from 100 g of untreated material (DM), corresponding to 73% of the theoretical. The liquor following steam explosion was fermented using Saccharomyces cerevisiae to investigate the inhibitory effect of the pretreatment. The achieved ethanol yield was slightly higher than that obtained with a reference sugar solution. This demonstrates that baker's yeast could adapt to the pretreated liquor and ferment the glucose to ethanol efficiently.  相似文献   

7.
This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8×106 dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8×106 dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4×106 dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems.  相似文献   

8.
Over the past three decades ethanol production in the United States has increased more than 10-fold, to approx 2.9 billion gal/yr (mid-2003), with ethanol production expected to reach 5 billion gal/yr by 2005. The simultaneous coproduction of 7 million t/yr of distiller's grain (DG) may potentially drive down the price of DG as a cattle feed supplement. The sale of residual DG for animal feed is an important part of corn dry-grind ethanol production economics; therefore, dry-grind ethanol producers are seeking ways to improve the quality of DG to increase market penetration and help stabilize prices. One possible improvement is to increase the protein content of DG by converting the residual starch and fiber into ethanol. We have developed methods for steam explosion, SO2, and dilute-sulfuric acid pretreatment of DG for evaluation as a feedstock for ethanol production. The highest soluble sugar yields (∼77% of available carbohydrate) were obtained by pretreatment of DG at 140°C for 20 min with 3.27 wt% H2SO4. Fermentation protocols for pretreated DG were developed at the bench scale and scaled to a working volume of 809 L for production of hydrolyzed distiller's grain (HDG) for feeding trials. The pretreated DG was fermented with Saccharomyces cerevisiae D5A, with ethanol yields of 73% of theoretical from available glucans. The HDG was air-dried and used for turkey-feeding trials. The inclusion of HDG into turkey poult (as a model non-ruminant animal) diets at 5 and 10% levels, replacing corn and soybean meal, showed weight gains in the birds similar to controls, whereas 15 and 20% inclusion levels showed slight decreases (−6%) in weight gain. At the conclusion of the trial, no negative effects on internal organs or morphology, and no mortality among the poults, was found. The high protein levels (58–61%) available in HDG show promising economics for incorporation of this process into corn dry-grind ethanol plants.  相似文献   

9.
An Aspen Plus™ modeling platform was developed to evaluate the performance of the conversion process of degermed defibered corn (DDC) to ethanol in 15- and 40-million gallons per year (MGPY) dry mill ethanol plants. Upstream corn milling equipment in conventional dry mill ethanol plants was replaced with germ and fiber separation equipment. DDC with higher starch content was fed to the existing saccharification and fermentation units, resulting in higher ethanol productivity than with regular corn. The results of the DDC models were compared with those of conventional dry mill ethanol process models. A simple financial analysis that included capital and operating costs, revenues, earnings, and return on investment was created to evaluate each model comparatively. Case studies were performed on 15- and 40-MGPY base case models with two DDC process designs and DDC with a mechanical oil extraction process.  相似文献   

10.
Process designs were conducted for each unit of the conceptual ammonia fiber explosion (AFEX) process, and fixed capital investment and operating costs were estimated. AFEX costs about $20-40/t of dry bio-mass treated. Several promising areas for reducing process costs exist. Return on investment (ROI) calculations were also done for AFEX-treated materials (as digestibility-enhanced animal feeds), in conjunction with sensitivity analyses on the overall processing costs. Estimated ROIs range from over 100%/y to negative, depending on the system variables. The most important variables are the cost of corn and corn fiber, ammonia loading, and whether or not drying is required.  相似文献   

11.
Corn fiber is a grain-processing residue containing significant amounts of cellulose, hemicellulose, and starch, which is collected in facilities where fuel ethanol is currently manufactured. Preliminary research has shown that corn fiber (30% moisture dry weight basis [dwb]) responds well to ammonia-fiber explosion (AFEX) pretreatment. However, an important AFEX pretreatment variable that has not been adequately explored for corn fiber is sample moisture. In the present investigation, we determined the best AFEX operating conditions for pretreatment of corn fiber at high moisture content (150% moisture dwb). The optimized AFEX treatment conditions are defined in terms of the moisture content, particle size, ammonia to biomass ratio, temperature, and residence time using the response of the pretreated biomass to enzymatic hydrolysis as an indicator. Approximate optimal-pretreatment conditions for unground corn fiber containing 150% (dwb) moisture were found to be: temperature, 90?C; ammonia: dry corn fiber mass ratio, 1:1; and residence time 30 min (average reactor pressure under these conditions was 200 pounds per square inch [psig]). Enzymatic hydrolysis of the treated corn fiber was performed with three different enzyme combinations. More than 80% of the theoretical sugar yield was obtained during enzymatic hydrolysis using the best enzyme combination after pretreatment of corn fiber under the optimized conditions previously described. A simple process for enzyme recovery and reuse to hydrolyze multiple portions of AFEX-treated corn fiber by one portion of enzyme preparation is demonstrated. Using this process, five batches of fresh substrate (at a concentration of 5% w/v) were successfully hydrolyzed by repeated recovery and reuse of one portion of enzyme preparation, with the addition of a small portion of fresh enzyme in each subsequent recycling step.  相似文献   

12.
A two-stage process for the manufacture of propylene oxide is described. The preliminary economics based on use of methanol as a regeneration factor has resulted in a production cost of $12.10/lb of propylene oxide based on propylene oxide production rate of 40 mg/g-cell/h in conventional reactor. Increasing the propylene oxide production from 40 to 500 mg/g-cell/h resulted in a cost reduction from $12.10 to 5.8/lb of propylene oxide. The granular-activated, carbon-fluidized bed reactor (GAC-FBR) absorbs the propylene oxide and when saturated is eluted with ethyl acetate, and the bed is regenerated by steam to drive off the residual solvents. The estimated manufacturing costs are approx 59% lower (from $12.10/lb in conventional reactors to $5.00/lb for GAC-FBRs) for products that are highly inhibitory such as epoxides. In the GAC-FBR reactor, enhancing the propylene oxide production rate from 120 to 1500 mg/g-cell/h has resulted in the cost reduction to $2.00/lb. Enhancing the production capacity from 1 million lb to 10 million lb/yr has further reduced the cost of production to $1.00/lb.  相似文献   

13.
The feasibility of using coproducts from dry grind corn ethanol production as a substrate for the production of soluble fiber was examined. Acid- and base-catalyzed hydrolysis experiments were performed using sulfuric acid and sodium hydroxide to partially hydrolyze hemicellulose content of whole stillage, a precursor to distillers' grains, to soluble fiber. The influences of temperature, reaction time, and hydrolyzing agent concentration on the formation of soluble fiber were studied. Soluble fiber was recovered by precipitation in a 95% ethanol solution. Results indicate that appreciable quantities of soluble fiber may be extracted using either acid- or base-catalyzed reactions. The highest yield of soluble fibers was 13.2 g per 100 g-db of treated whole stillage using one weight percent sodium hydroxide at 80oC for 1 h. HPLC analysis was used to quantify the amount of monomeric sugars which were formed during the hydrolysis procedures.  相似文献   

14.
Yi EC  Hackett M 《The Analyst》2000,125(4):651-656
A fast, convenient extraction method for lipopolysaccharide (LPS), using a commercial RNA isolating reagent, allows the isolation of LPS or lipid A from low milligram (dry weight) quantities of bacterial cells. The method avoids the use of specialized equipment and has been used for processing relatively large numbers of samples. The major components of the commercial RNA isolating reagent, Tri-Reagent, are phenol and guanidinium thiocyanate in aqueous solution. The bacterial cell membranes are disrupted with guanidinium thiocyanate, which eliminates the need for mechanical cell disruption (e.g. French press) or heating. LPS and its degradation products, with particular attention paid to its bioactive lipid A portion, were measured and compared with those from the most common conventional extraction method, hot phenol-water. Negative ion quadrupole ion trap and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, fatty acid composition analysis by capillary gas chromatography, total and free phosphate by UV spectrophotometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that LPS and lipid A isolated using the Tri-Reagent approach were cleaner and suffered less degradation through loss of phosphate and (or) fatty acyl side chains from lipid A. The Tri-Reagent extraction method generated low free phosphate contamination, 11% of the total phosphate concentration, whereas the hot phenol-water extraction method gave approximately 58% as free, inorganic phosphate. Similar results were observed for the degradation of fatty acyl side chains. The time required by the new method is considerably shorter (two or three days) than that required by conventional hot phenol-water extraction (about two weeks).  相似文献   

15.
A two-stage process for the manufacture of propylene oxide is described. The preliminary economics based on use of methanol as a regeneration factor has resulted in a production cost of $12.10/lb of propylene oxide based on propylene oxide production rate of 40 mg/g-cell/h in conventional reactor. Increasing the propylene oxide production from 40 to 500 mg/g-cell/h resulted in a cost reduction from $12.10 to 5.8/lb of propylene oxide. The granular-activated, carbon-fluidized bed reactor (GAC-FBR) absorbs the propylene oxide and when saturated is eluted with ethyl acetate, and the bed is regenerated by steam to drive off the residual solvents. The estimated manufacturing costs are approx 59% lower (from $12.10/lb in conventional reactors to $5.00/lb for GAC-FBRs) for products that are highly inhibitory such as epoxides. In the GAC-FBR reactor, enhancing the propylene oxide production rate from 120 to 1500 mg/gcell/h has resulted in the cost reduction to $2.00/lb. Enhancing the production capacity from 1 million lb to 10 million lb/yr has further reduced the cost of production to $1.00/lb. This article is reprinted from the Symposium issue of ABAB entitled “Biotechnology for Fuels and Chemicals: Proceedings of the Nineteenth Symposium of Biotechnology for Fuels and Chemicals” (pp. 651–659). Figures and captions are correct as they now appear.  相似文献   

16.
As biorefining conversion technologies become commercial, feedstock availability, supply system logistics, and biomass material attributes are emerging as major barriers to the availability of corn stover for biorefining. While systems do exist to supply corn stover as feedstock to biorefining facilities, stover material attributes affecting physical deconstruction, such as densification and post-harvest material stability, challenge the cost-effectiveness of present-day feedstock logistics systems. In addition, the material characteristics of corn stover create barriers with any supply system design in terms of equipment capacity/efficiency, dry matter loss, and capital use efficiency. However, analysis of a conventional large square bale corn stover feedstock supply system concludes that (1) where other agronomic factors are not limiting, corn stover can be accessed and supplied to a biorefinery using existing bale-based technologies, (2) technologies and new supply system designs are necessary to overcome biomass bulk density and moisture material property challenges, and (3) major opportunities to improve conventional bale biomass feedstock supply systems include improvements in equipment efficiency and capacity and reducing biomass losses in harvesting, collection, and storage. Finally, the backbone of an effective stover supply system design is the optimization of intended and minimization of unintended material property changes as the corn stover passes through the individual supply system processes from the field to the biorefinery conversion processes.
J. Richard HessEmail:
  相似文献   

17.
Ammonia fiber explosion treatment of corn stover   总被引:1,自引:0,他引:1  
Optimizing process conditions and parameters such as ammonia loading, moisture content of biomass, temperature, and residence time is necessary for maximum effectiveness of the ammonia fiber explosion process. Approximate optimal pretreatment conditions for corn stover were found to be temperature of 90°C, ammonia: dry corn stover mass ratio of 1∶1, moisture content of corn stover of 60% (dry weight basis), and residence time (holding at target temperature), of 5 min. Approximately 98% of the theoretical glucose yield was obtained during enzymatic hydrolysis of the optimal treated corn stover using 60 filter paper units (FPU) of cellulase enzyme/g of glucan (equal to 22 FPU/g of dry corn stover). The ethanol yield from this sample was increased up to 2.2 times over that of untreated sample. Lowering enzyme loading to 15 and 7.5 FPU/g of glucan did not significantly affect the glucose yield compared with 60 FPU, and any differences between effects at different enzyme levels decreased as the treatment temperature increased.  相似文献   

18.
The ene reactions of nitroso compounds were studied with B3LYP/6-31G* geometry optimizations and energy calculations, along with single point energy evaluations using CASPT2/6-31G** and UCCSD(T)/6-311+G* methods. Reactions of HNO with propene and of MeNO and p-NO2C6H4NO with propene or substituted alkenes were also studied. The reaction mechanism is stepwise and involves a polarized diradical intermediate. The electronic structure of this intermediate is between that of a closed shell polar species and that of a pure diradical, and it is stabilized by polar solvents. A weak C-N bonding interaction combined with a CH-O hydrogen bond leads to heightened barriers to rotation about formally single bonds compared to conventional diradicals. Consequently, rotation is slower than hydrogen abstraction and cyclization to form an aziridine N-oxide. This aziridine N-oxide does not lead to ene products without subsequent ring opening but provides a mechanism for the RNO moiety to translate from one end of the alkene to the other. B3LYP calculations are also able to reproduce kinetic isotope effects and regioselectivity.  相似文献   

19.
Corn fiber, a by-product of the corn wet-milling industry, represents a renewable resource that is readily available in significant quantities and could potentially serve as a low-cost feedstock for the production of fuel-grade alcohol. In this study, we used a batch reactor to steam explode corn fiber at various degrees of severity to evaluate the potential of using this feedstock in the bioconversion process. The results indicated that maximum sugar yields (soluble and following enzymatic hydrolysis) were recovered from corn fiber that was pretreated at 190°C for 5 min with 6% SO2. Sequential SO2-catalyzed steam explosion and enzymatic hydrolysis resulted in very high conversion (81%) of all polysaccharides in the corn fiber to monomeric sugars. Subsequently, Saccharomyces cerevisiae was able to convert the resultant corn fiber hydrolysates to ethanol very efficiently, yielding 90–96% of theoretical conversion during the fermentation process.  相似文献   

20.
Carotenoids are essential components in the human diet due to their positive functions in ocular and cognitive health. This study investigated composition of carotenoids in hairless canary seed (HCS) as a novel food and the effect of baking on carotenoids in bread and muffin made from HCS, wheat and corn. Three bread formulations made from wheat and HCS blends were evaluated and compared with control wheat bread. In addition, three low-fat muffin recipes prepared from HCS alone or in blends with corn were assessed. The fate of carotenoid compounds in breads and muffins was monitored after dry mixing, dough/batter formation and oven baking. Carotenoids in products were quantified using UPLC and their identification was confirmed based on LC-MS/MS. Hairless canary seed and corn were fairly rich in carotenoids with a total content of 7.6 and 12.9 µg/g, respectively, compared with wheat (1.3 µg/g). Nineteen carotenoid compounds were identified, with all-trans lutein being the principal carotenoid in HCS followed by lutein 3-O-linoleate, lutein 3-O-oleate and lutein di-linoleate. There were significant reductions in carotenoids in muffin and bread products. It appears that batter or dough preparation causes more reductions in carotenoids than oven baking, probably due to enzymatic oxidation and degradation. Muffin-making resulted in lower lutein reductions compared with the bread-making process. The results suggest that muffins made from hairless canary seed alone or in blends with corn could boost the daily intake of lutein and/or zeaxanthin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号