首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
The analysis of poly(ethylene glycol) (PEG)-containing particles by online single particle aerosol mass spectrometers equipped with laser desorption/ionization (LDI) is reported. We demonstrate that PEG-containing particles are useful in the development of aerosol mass spectrometers because of their ease of preparation, low cost, and inherently recognizable mass spectra. Solutions containing millimolar quantities of PEGs were nebulized and, after drying, the resultant micrometer-sized PEG-containing particles were sampled. LDI (266 nm) of particles containing NaCl and PEG molecules of average molecular weight<500 Da generated mass spectra reminiscent of mass spectra of PEG collected by other mass spectrometer platforms including the characteristic distribution of positive ions (Na+ adducts) separated by the 44 m/z units of the ethylene oxide units separating each degree of polymerization. PEGs of average molecular weight>500 Da were detected from particles that also contained the tripeptide tyrosine-tyrosine-tyrosine or 2,5-dihydroxybenzoic acid, which were added to nebulized solutions to act as matrices to assist LDI using pulsed 266 nm and 355 nm lasers, respectively. Experiments were performed on two aerosol mass spectrometers, one reflectron and one linear, that each utilize two time-of-flight mass analyzers to detect positive and negative ions created from a single particle. PEG-containing particles are currently being employed in the optimization of our bioaerosol mass spectrometers for the application of measurements of complex biological samples, including human effluents, and we recommend that the same strategies will be of great utility to the development of any online aerosol LDI mass spectrometer platform.  相似文献   

2.
Analysis of organic compounds in aerosol particles using real-time single particle techniques is difficult because of extensive fragmentation that occurs in the laser desorption/ionization step. In an effort to avoid such fragmentation processes, we coupled a “soft” two-step laser desorption/ionization technique (L2MS) with aerosol time-of-flight mass spectrometry (ATOFMS). In these studies, we find this combination preserves intact organic molecules while providing the real-time mass spectra of suspended aerosol particles. Mass spectra of particles analyzed by one-step desorption mass spectrometry and L2MS are presented for comparison. These include 2,4-dihydroxybenzoic acid as a test case and wood and cigarette combustion particles as real world examples. This is the first published demonstration of L2MS performed on single particles not deposited on a substrate prior to analysis.  相似文献   

3.
利用激光解吸附电离飞行时间质谱技术获得了若干已知化学成分的气溶胶粒子的飞行时间质谱,分析标识了各类气溶胶粒子的特征离子谱峰,并对一些特征峰的形成机理进行了探讨。在此基础上,对烟花火药以及纸张燃烧产生的烟气气溶胶粒子进行了实时在线测量,通过对质谱图的分析,获得了有关此两类燃烧过程产生的烟气气溶胶单粒子的化学组成信息。  相似文献   

4.
Covariance mapping is used to study ion formation mechanisms in laser desorption ionization of individual 50 or 220 nm diameter particles having compositions similar to ambient aerosol. Single particle mass spectra are found to vary substantially from particle to particle. This variation is systematic--the energetically preferred ions (e.g., lowest ionization energy, highest electron affinity) are positively correlated with each other and negatively correlated with less preferred ions. For the compositions studied, the average positive ion yield is two to five times greater than the negative ion yield, indicating that free electrons are the main negatively charged species. For many particles, typically 20% to 40% of those analyzed, only positive ions are detected. Smaller particles give fewer negative ions, presumably because the plume is less dense and electron capture is less likely. The results suggest that ion formation occurs by a two stage process. In the first stage, photoionization of laser desorbed neutrals gives cations and free electrons. In the second stage, collisions in the plume cause electron capture and competitive charge transfer. When the particle ablates in a manner giving a dense plume with many collisions, the energetically preferred positive and negative ions are dominant. When the particle ablates in a manner giving a less dense plume with fewer collisions, the less preferred ions are able to survive and the energetically preferred ions constitute a lower fraction of the total ion signal. Systematic particle to particle variations of relative signal intensities can complicate ambient particle classification efforts by spreading a single particle composition over several classes.  相似文献   

5.
The need of cellular and sub‐cellular spatial resolution in laser desorption ionization (LDI)/matrix‐assisted LDI (MALDI) imaging mass spectrometry (IMS) necessitates micron and sub‐micron laser spot sizes at biologically relevant sensitivities, introducing significant challenges for MS technology. To this end, we have developed a transmission geometry vacuum ion source that allows the laser beam to irradiate the back side of the sample. This arrangement obviates the mechanical/ion optic complications in the source by completely separating the optical lens and ion optic structures. We have experimentally demonstrated the viability of transmission geometry MALDI MS for imaging biological tissues and cells with sub‐cellular spatial resolution. Furthermore, we demonstrate that in conjunction with new sample preparation protocols, the sensitivity of this instrument is sufficient to obtain molecular images at sub‐micron spatial resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The changes in the ion signals in the isotope cluster, mass resolution, signal-to-noise ratio and mass accuracy for matrix-assisted laser desorption/ionization (MALDI) of DNA oligonucleotides (dGGATC, dCAGCt, and dAACCGTT) and their fragment ions were evaluated, and these data were compared with those obtained using 3-hydroxypicolinic acid. Mass spectra obtained by using 2,5-dihydroxybenzoic acid (2,5-DHB) appear to have differences from the theoretical isotopic clusters, which arise by reductive hydrogenation producing a second peak at the M + 2 isotope of the native oligonucleotide. Based on the patterns of the isotopic envelope observed in the in-source decay fragments, we propose that cytosine is the site of reduction. We do not find evidence of reduction of oligonucleotides, viz. dTGGGGTT, that do not contain cytosine; however, 2'-deoxycytidine and 2'-deoxycytidine-5'-monophosphate undergo reductive hydrogenation. Several experiments were carried out in an effort to determine whether the reductive hydrogenation occurs during sample preparation or as a result of laser irradiation. The results of these experiments suggest that it occurs during sample preparation. The relative intensities of ion signals corresponding to the reduced base can be altered by using different matrix additives (aminonaphthalenes) or a different substrate (copper). Also, the oxidized form of 2,5-DHB is trapped by reaction with the side chain of cysteine in glutathione, providing evidence that the reaction occurs in solution as the matrix crystallizes.  相似文献   

7.
We report the direct laser desorption/ionization (LDI) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of four inorganic coordination complexes: monometallic [Ir(dpp)(2)Cl(2)](PF(6)), homonuclear trimetallic ([(bpy)(2)Ru(dpp)](2)RuCl(2))- (PF(6))(4), and heteronuclear [(tpy)Ru(tpp)Ru(tpp)RhCl(3)](PF(6))(4) and ([(bpy)(2)Ru(dpp)](2)IrCl(2))(PF(6))(5) (dpp = 2,3-bis-(2'-pyridyl)pyrazine, bpy = 2,2'-bipyridine, tpy = 2,2',6',2"-terpyradine, tpp = 2,3,5,6,-tetrakis-(2'-pyridyl)pyrazine). Spectral intensities and fragmentation patterns are compared and evaluated for instrument parameters, matrix selection, and matrix-to-analyte ratio. Direct LDI and MALDI mass spectra of the monometallic complex showed the same ion peaks and differed only in the relative peak intensities. Direct LDI of the trimetallic complexes produced only low-mass fragments containing one metal at most. MALDI spectra of the trimetallic complexes exhibited little fragmentation in the high-mass region (>1500 Da) and less fragmentation in the low-mass region compared to direct LDI. Significant fragments of the molecules were detected and identified, including ligand fragments, intermediate-mass fragments such as [Ru(tpy)](+), and molecular ions with varying degrees of PF(6)(-) loss ([M - n(PF(6))](+), where n = 1-3). A correlation exists between the solution-phase electrochemistry and the observed [M - n(PF(6))](+) series of peaks for the trimetallic complexes. Proper matrix selection for MALDI analysis was vital, as was an appropriate matrix-to-analyte ratio. The results demonstrate the applicability of MALDI-TOFMS for the structural characterization of labile inorganic coordination complexes.  相似文献   

8.
Matrix-assisted laser desorption/ionization (MALDI) mass spectra were obtained from single particles injected directly into a time-of-flight mass spectrometer. Aerosol particles were generated at atmospheric pressure using a piezoelectric single-particle generator or a pneumatic nebulizer and introduced into the mass spectrometer through a series of narrow-bore tubes. Particles were detected by light scattering that was used to trigger a 337 nm pulsed nitrogen laser and the ions produced by laser desorption were mass separated in a two-stage reflectron time-of-flight mass spectrometer. MALDI mass spectra of single particles containing bradykinin, angiotensin II, gramicidin S, vitamin B(12) or gramicidin D were obtained at mass resolutions greater than 400 FWHM. For the piezoelectric particle generator, the efficiency of particle delivery was estimated to be approximately 0.02%, and 50 pmol of sample were consumed for each mass spectrum. For the pneumatic nebulizer, mass spectra could be obtained from single particles containing less than 100 amol of analyte, although the sample consumption for a typical mass spectrum was over 400 pmol.  相似文献   

9.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Polyethylene's inert nature and difficulty to dissolve in conventional solvents at room temperature present special problems for sample preparation and ionization in mass spectrometric analysis. We present a study of ionization behavior of several polyethylene samples with molecular masses up to 4000 Da in laser desorption ionization (LDI) time-of-flight mass spectrometers equipped with a 337 nm laser beam. We demonstrate unequivocally that silver or copper ion attachment to saturated polyethylene can occur in the gas phase during the UV LDI process. In LDI spectra of polyethylene with molecular masses above approximately 1000 Da, low mass ions corresponding to metal-alkene structures are observed in addition to the principal distribution. By interrogating a well-characterized polyethylene sample and a long chain alkane, C94H190, these low mass ions are determined to be the fragmentation products of the intact metal-polyethylene adduct ions. It is further illustrated that fragmentation can be reduced by adding matrix molecules to the sample preparation.  相似文献   

11.
Leonardite and Elliot soil humic acids have been analyzed by laser desorption ionization mass spectrometry (LDI MS) in the m/z 4000-200,000 range. Positive ion mass spectra for each humic acid obtained under optimum conditions showed a broad high-mass distribution between m/z 20,000 and 80,000. The dependence of the mass distribution on instrumental parameters and solution conditions was used to investigate the nature of the high-mass peaks from humic acid spectra. Our data suggests that macromolecular ions and humic acid aggregates have the same probability of occurrence while cluster ion formation has a low probability of occurrence.  相似文献   

12.
Particle suspension matrices have been successfully utilized for the analysis of tetracycline antibiotics by thin-layer chromatography-matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (TLC-MALDI-TOF-MS). Particles of different materials and sizes have been investigated (Co-UFP, TiN, TiO2, Graphite and Silicon) by applying particle suspensions to eluted TLC plates. Mass spectra and mass chromatograms have been recorded directly from the TLC plates. Strong cationization by sodium and potassium was obtained in the positive ion mode, with [M+Na-NH3]+ ions being the predominant signals. The TLC-MALDI mass spectra recorded from graphite suspensions showed the lowest background noise and the highest peak intensities from the range of suspension matrices studied. The mass accuracy from graphite films was improved by adding the peptide Phe-Phe to the graphite suspensions. This allowed internal recalibration of the TLC-MALDI mass spectra acquired during a run. One major potential advantage of TLC-MALDI-TOF-MS has been demonstrated in the analysis of chlortetracycline and tetracycline in a mixture of oxytetracycline, chlortetracycline, tetracycline and minocycline. Examination of the TLC plate prior to MALDI analysis showed only an unresolved spot for chlortetracycline and tetracycline. However by investigation of the MALDI mass spectra and plotting of single ion chromatograms separate peaks for chlortetracycline and tetracycline could be obtained.  相似文献   

13.
Matrix-assisted laser desorption/ionization (MALDI) was used for the on-line analysis of single particles. An aerosol was generated at atmospheric pressure and particles were introduced into a time-of-flight (TOF) mass spectrometer through a single-stage differentially pumped capillary inlet. Prior to entering the mass spectrometer, a matrix was added to the particles using a heated saturator and condenser. A liquid matrix, 3-nitrobenzyl alcohol (NBA), and a solid matrix, picolinic acid (PA), were used. Particles were ablated with a 351 nm excimer laser and the resulting ions were mass-separated in a two-stage reflectron TOF mass spectrometer. Aerosol particles containing the biomolecules erythromycin and gramicidin S were analyzed with and without the matrix addition step. The addition of NBA to the particles resulted in mass spectra that contained an intact molecular ion mass peak. In contrast, PA-coated particles did not yield molecular ion peaks from matrix-coated particles.  相似文献   

14.
An approach is proposed for the estimation of the contribution of field ionization (FI) to the mechanism of dye ion formation under the conditions of laser desorption/ionization (LDI) from a nanostructurized graphite surface. As test systems, rough graphite layers with dyes, e.g., imidazophenazine derivatives applied to them were chosen; these ensure FI in a strong electric field. The dyes form three neutral precursors upon reduction and various types of ions in different ionization methods. It was found that the mass distribution within the group of peaks formed by the initial dye molecule and the products of its reduction in the positive ion mode upon LDI from a rough graphite surface is shifted to lower masses by one atomic mass unit in comparison to the distribution recorded for LDI from a smooth metal support. The analysis of plausible pathways of ion formation has shown that such a shift may be due to the superposition of ions formed by the FI mechanism on a graphite substrate with a number of ions formed by protonation in LDI with no dependence on the support type. In the negative ion mode, the registration of LDI dye spectra succeeded only if the graphite substrates used favored negative FI and electron emission enhanced by the field.  相似文献   

15.
Laser‐based ionization techniques have demonstrated to be a valuable analytical tool to study organic pigments by mass spectrometric analyses. Though laser‐based ionization techniques have identified several natural and synthetic organic dyes and pigments, they have never been used in the characterization of purple. In this work, positive and negative‐mode laser desorption/ionization mass spectrometry (LDI‐MS) was used for the first time to detect indigoids in shellfish purple. The method was used to study organic residues collected from archaeological ceramic fragments that were known to contain purple, as determined by a classical high‐performance liquid chromatography‐based procedure. LDI‐MS provides a mass spectral fingerprint of shellfish purple, and it was found to be a rapid and successful tool for the identification of purple. In addition, a comparison between positive and negative mode ionization highlighted the complementarity of the two ionization modes. On the one hand, the negative‐ion mode LDI‐MS showed a better selectivity and sensitivity to brominated molecules, such as 6,6'‐dibromoindigo, 6‐monobromoindigo, 6,6'‐dibromoindirubin, 6‐ and 6’‐monobromoindirubin, thanks to their electronegativity, and produced simpler mass spectra. On the other hand, negative‐ion mode LDI‐MS was found to have a lower sensitivity to non‐brominated compounds, such as indigo and indirubin, whose presence can be established in any case by collecting the complementary positive‐ion LDI mass spectrum. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Combustion-related soot particles were sampled in situ from the stoker system of a 0.5 MW incineration pilot plant (feeding material was wood) at two different heights over the feed bed in the third air supply zone. The collected particles were re-aerosolized by a powder-dispersing unit and analyzed by a single-particle laser desorption/ionization (LDI) time-of-flight mass spectrometer (aerosol-time-of-flight mass spectrometry, ATOFMS). The ATOFMS instrument characterizes particles according to their aerodynamic size (laser velocimetry) and chemical composition (LDI mass spectrometry). Chemical species from the particles are laser desorbed/ionized by 266 nm Nd:YAG laser pulses. ATOFMS results on individual 'real world' particles in general give information on the bulk inorganic composition. Organic compounds, which are of much lower concentrations, commonly are not detectable. However, recent off-line laser microprobe mass spectrometric (LMMS) experiments on bulk soot aerosol samples have emphasized that organic compounds can be desorbed and ionized without fragmentation in LDI experiments from black carbonaceous matrices. This paper reports the successful transfer of the off-line results to on-line analysis of airborne soot particles by ATOFMS. The detection of polycyclic aromatic hydrocarbons from soot particles is addressed in detail. The results are interpreted in the context of the recent LMMS results. Furthermore, their relevance with respect to possible applications in on-line monitoring of combustion processes is discussed.  相似文献   

17.
Citrate-capped gold nanoparticles (AuNPs) serve as matrices for the determination of biomolecules in a high-salt solution through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In the case of using 2,5-dihydroxybenzoic acid (2,5-DHB) as a matrix, the signal intensities of neutral steroids were severely suppressed in a high-salt solution. A high concentration of NaCl caused the formation of the sodium adduct ions during the desorption/ionization process, resulting in a decrease of the signal intensities of the protonated ions. In comparison, by applying AuNP-assisted LDI-TOF-MS, the signal intensities of neutral steroids remained almost constant when the concentration of NaCl was increased to 500 mM. Because the use of citrate-capped AuNPs as matrices primarily offers alkali metal ion adducts, AuNP matrices have a higher tolerance to high NaCl concentrations relative to that of 2,5-DHB matrices. The relevant phenomena are also discovered in the case of analysis of neutral carbohydrate, monosialoganglioside, indolamine, and angiotensin I. The quantification of small molecules in a high-salt solution has been accomplished by AuNP-assisted LDI-TOF-MS coupled to a unique sample preparation, in which samples are deposited onto the sample plate before AuNPs. The present method has been further applied to the determination of urea, creatinine, uric acid, and glucose in a urine sample.  相似文献   

18.
The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material’s morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C60 fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.  相似文献   

19.
We report the results of experimental studies on the effects of sample supports in laser desorption/ionization mass spectrometry (LDI-MS). LDI time-of-flight (TOF) mass spectra obtained for C(60) and insulin samples deposited onto standard stainless steel substrate and/or onto some non-metallic materials (glass, scotch tape, floppy disc foil, Teflon foil, photocopy film), all recorded under identical, typical experimental conditions, have been compared with regard to their intensity and quality. The LDI investigations show that compared with stainless steel, glass and floppy disc foil sample supports boost (2-3.5 times) ion yields for C(60)(+) and C(60)(-) ions, respectively. The stainless steel and scotch tape sample supports are the best for the mass resolution of positive ions and the formation of (C(60))(n)(-) (n 相似文献   

20.
We report new experiments in which laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) was applied to detection and characterization of gramicidin S and IgG pentapeptide (DSDPR) that were reactively landed on plasma-treated stainless steel surfaces. The distributions of [M + H](+), [M + Na](+) and [M + K](+) ion species in LDI-TOF for gramicidin S and IgG pentapeptide (DSDPR) were found to be markedly different from those in conventional MALDI-TOF spectra of the same samples. LDI-TOF mass spectra showed a strong preference for [M + K](+) adducts even in the presence of a large excess of sodium cations, or following surface treatment with trifluoroacetic acid. Alkali metal cations (K(+) and Cs(+)) can be exchanged in reactively landed peptide samples to provide the corresponding cationized peptide ions by LDI. Multiple charged trypsin cations were reactively landed into a layer of 2-(4-hydroxyphenylazo)benzoic acid and ionized by LDI. The ionization mechanisms for LDI of surface-deposited peptides are briefly discussed. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号