首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kreweras conjectured that every perfect matching of a hypercube Qn for n2 can be extended to a hamiltonian cycle of Qn. Fink confirmed the conjecture to be true. It is more general to ask whether every perfect matching of Qn for n2 can be extended to two or more hamiltonian cycles of Qn. In this paper, we prove that every perfect matching of Qn for n4 can be extended to at least 22n?4 different hamiltonian cycles of Qn.  相似文献   

2.
We consider the problem of existence of a Hamiltonian cycle containing a matching and avoiding some edges in an n-cube Qn, and obtain the following results. Let n3,ME(Qn), and FE(Qn)\M with 1|F|2n4|M|. If M is a matching and every vertex is incident with at least two edges in the graph QnF, then all edges of M lie on a Hamiltonian cycle in QnF. Moreover, if |M|=1 or |M|=2, then the upper bound of number of faulty edges tolerated is sharp. Our results generalize the well-known result for |M|=1.  相似文献   

3.
In this paper, we study the existence of perfect matchings and Hamiltonian cycles in the preferential attachment model. In this model, vertices are added to the graph one by one, and each time a new vertex is created it establishes a connection with m random vertices selected with probabilities proportional to their current degrees. (Constant m is the only parameter of the model.) We prove that if , then asymptotically almost surely there exists a perfect matching. Moreover, we show that there exists a Hamiltonian cycle asymptotically almost surely, provided that . One difficulty in the analysis comes from the fact that vertices establish connections only with vertices that are “older” (ie, are created earlier in the process). However, the main obstacle arises from the fact that edges in the preferential attachment model are not generated independently. In view of that, we also consider a simpler setting—sometimes called uniform attachment—in which vertices are added one by one and each vertex connects to m older vertices selected uniformly at random and independently of all other choices. We first investigate the existence of perfect matchings and Hamiltonian cycles in the uniform attachment model, and then extend the argument to the preferential attachment version.  相似文献   

4.
Chen et al determined the minimum degree threshold for which a balanced k-partite graph has a Hamiltonian cycle. We give an asymptotically tight minimum degree condition for Hamiltonian cycles in arbitrary k-partite graphs in that all parts have at most n/2 vertices (a necessary condition). To do this, we first prove a general result that both simplifies the process of checking whether a graph G is a robust expander and gives useful structural information in the case when G is not a robust expander. Then we use this result to prove that any k-partite graph satisfying the minimum degree condition is either a robust expander or else contains a Hamiltonian cycle directly.  相似文献   

5.
Zhiquan Hu  Hao Li 《Discrete Mathematics》2009,309(5):1020-1024
For a graph G, let σ2(G) denote the minimum degree sum of two nonadjacent vertices (when G is complete, we let σ2(G)=). In this paper, we show the following two results: (i) Let G be a graph of order n≥4k+3 with σ2(G)≥n and let F be a matching of size k in G such that GF is 2-connected. Then GF is hamiltonian or GK2+(K2Kn−4) or ; (ii) Let G be a graph of order n≥16k+1 with σ2(G)≥n and let F be a set of k edges of G such that GF is hamiltonian. Then GF is either pancyclic or bipartite. Examples show that first result is the best possible.  相似文献   

6.
Let M be a perfect matching in a graph. A subset S of M is said to be a forcing set of M, if M is the only perfect matching in the graph that contains S. The minimum size of a forcing set of M is called the forcing number of M. Pachter and Kim (1998) conjectured that the forcing number of every perfect matching in the n-dimensional hypercube is 2n?2, for all n2. This was revised by Riddle (2002), who conjectured that it is at least 2n?2, and proved it for all even n. We show that the revised conjecture holds for all n2. The proof is based on simple linear algebra.  相似文献   

7.
The resonance graph R(B) of a benzenoid graph B has the perfect matchings of B as vertices, two perfect matchings being adjacent if their symmetric difference forms the edge set of a hexagon of B. A family P of pair-wise disjoint hexagons of a benzenoid graph B is resonant in B if B-P contains at least one perfect matching, or if B-P is empty. It is proven that there exists a surjective map f from the set of hypercubes of R(B) onto the resonant sets of B such that a k-dimensional hypercube is mapped into a resonant set of cardinality k.  相似文献   

8.
We define a perfect matching in a k-uniform hypergraph H on n vertices as a set of ⌊n/k⌋ disjoint edges. Let δk−1(H) be the largest integer d such that every (k−1)-element set of vertices of H belongs to at least d edges of H.In this paper we study the relation between δk−1(H) and the presence of a perfect matching in H for k?3. Let t(k,n) be the smallest integer t such that every k-uniform hypergraph on n vertices and with δk−1(H)?t contains a perfect matching.For large n divisible by k, we completely determine the values of t(k,n), which turn out to be very close to n/2−k. For example, if k is odd and n is large and even, then t(k,n)=n/2−k+2. In contrast, for n not divisible by k, we show that t(k,n)∼n/k.In the proofs we employ a newly developed “absorbing” technique, which has a potential to be applicable in a more general context of establishing existence of spanning subgraphs of graphs and hypergraphs.  相似文献   

9.
Is it true that every matching in the n-dimensional hypercube can be extended to a Gray code? More than two decades have passed since Ruskey and Savage asked this question and the problem still remains open. A solution is known only in some special cases, including perfect matchings or matchings of linear size. This article shows that the answer to the Ruskey–Savage problem is affirmative for every matching of size at most . The proof is based on an inductive construction that extends balanced matchings in the completion of the hypercube by edges of into a Hamilton cycle of . On the other hand, we show that for every there is a balanced matching in of size that cannot be extended in this way.  相似文献   

10.
Let D be the circulant digraph with n vertices and connection set {2,3,c}. (Assume D is loopless and has outdegree 3.) Work of S. C. Locke and D. Witte implies that if n is a multiple of 6, c{(n/2)+2,(n/2)+3}, and c is even, then D does not have a hamiltonian cycle. For all other cases, we construct a hamiltonian cycle in D.  相似文献   

11.
We study a recurrence defined on a three dimensional lattice and prove that its values are Laurent polynomials in the initial conditions with all coefficients equal to one. This recurrence was studied by Propp and by Fomin and Zelivinsky. Fomin and Zelivinsky were able to prove Laurentness and conjectured that the coefficients were 1. Our proof establishes a bijection between the terms of the Laurent polynomial and the perfect matchings of certain graphs, generalizing the theory of Aztec Diamonds. In particular, this shows that the coefficients of this polynomial, and polynomials obtained by specializing its variables, are positive, a conjecture of Fomin and Zelevinsky.  相似文献   

12.
The problem is considered under which conditions a 4-connected planar or projective planar graph has a Hamiltonian cycle containing certain prescribed edges and missing certain forbidden edges. The results are applied to obtain novel lower bounds on the number of distinct Hamiltonian cycles that must be present in a 5-connected graph that is embedded into the plane or into the projective plane with face-width at least five. Especially, we show that every 5-connected plane or projective plane triangulation on n vertices with no non-contractible cyles of length less than five contains at least distinct Hamiltonian cycles. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 81–96, 1999  相似文献   

13.
Let G = (V, E) be a connected graph. For a vertex subset , G[S] is the subgraph of G induced by S. A cycle C (a path, respectively) is said to be an induced cycle (path, respectively) if G[V(C)] = C (G[V(P)] = P, respectively). The distance between a vertex x and a subgraph H of G is denoted by , where d(x, y) is the distance between x and y. A subgraph H of G is called 2-dominating if d(x, H) ≤ 2 for all . An induced path P of G is said to be maximal if there is no induced path P′ satisfying and . In this paper, we assume that G is a connected claw-free graph satisfying the following condition: for every maximal induced path P of length p ≥ 2 with end vertices u, v it holds:
Under this assumption, we prove that G has a 2-dominating induced cycle and G is Hamiltonian. J. Feng is an associate member of “Graduiertenkolleg: Hierarchie und Symmetrie in mathematischen Modellen (DFG)” at RWTH Aachen, Germany.  相似文献   

14.
2012年,Bang-Jensen和Huang(J.Combin.Theory Ser.B.2012,102:701-714)证明了2-弧强的局部半完全有向图可以分解为两个弧不相交的强连通生成子图当且仅当D不是偶圈的二次幂,并提出了任意3-强的局部竞赛图中包含两个弧不相交的Hamilton圈的猜想.主要研究正圆有向图中的弧不相交的Hamilton路和Hamilton圈,并证明了任意3-弧强的正圆有向图中包含两个弧不相交的Hamilton圈和任意4-弧强的正圆有向图中包含一个Hamilton圈和两个Hamilton路,使得它们两两弧不相交.由于任意圆有向图一定是正圆有向图,所得结论可以推广到圆有向图中.又由于圆有向图是局部竞赛图的子图类,因此所得结论说明对局部竞赛图的子图类――圆有向图,Bang-Jensen和Huang的猜想成立.  相似文献   

15.
In this article, we shall prove that every bipartite quadrangulation G on the torus admits a simple closed curve visiting each face and each vertex of G exactly once but crossing no edge. As an application, we conclude that the radial graph of any bipartite quadrangulation on the torus has a hamiltonian cycle. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory 69:143‐151, 2012  相似文献   

16.
Let G be an (m+2)-graph on n vertices, and F be a linear forest in G with |E(F)|=m and ω1(F)=s, where ω1(F) is the number of components of order one in F. We denote by σ3(G) the minimum value of the degree sum of three vertices which are pairwise non-adjacent. In this paper, we give several σ3 conditions for a dominating cycle or a hamiltonian cycle passing through a linear forest. We first prove that if σ3(G)≥n+2m+2+max{s−3,0}, then every longest cycle passing through F is dominating. Using this result, we prove that if σ3(G)≥n+κ(G)+2m−1 then G contains a hamiltonian cycle passing through F. As a corollary, we obtain a result that if G is a 3-connected graph and σ3(G)≥n+κ(G)+2, then G is hamiltonian-connected.  相似文献   

17.
In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. We prove that a planar graph G has a cycle containing a given subset X of its vertex set and any two prescribed edges of the subgraph of G induced by X if |X|≥3 and if X is 4-connected in G. If X=V(G) then Sanders’ result follows.  相似文献   

18.
19.
For any positive integer k let B(k) denote the bipartite graph of k- and k+1-element subsets of a 2k+1-element set with adjacency given by containment. It has been conjectured that for all k, B(k) is Hamiltonian. Any Hamiltonian cycle would be the union of two (perfect) matchings. Here it is shown that for all k>1 no Hamiltonian cycle in B(k) is the union of two lexicographic matchings.Supported by Office of Naval Research Contract N00014-85-K-0769.Supported by NSERC grants 69-3378 and 69-0259.  相似文献   

20.
Suppose that 0<η<1 is given. We call a graph, G, on n vertices an η-Chvátal graph if its degree sequence d1d2≤?≤dn satisfies: for k<n/2, dk≤min{k+ηn,n/2} implies dnkηnnk. (Thus for η=0 we get the well-known Chvátal graphs.) An -algorithm is presented which accepts as input an η-Chvátal graph and produces a Hamiltonian cycle in G as an output. This is a significant improvement on the previous best -algorithm for the problem, which finds a Hamiltonian cycle only in Dirac graphs (δ(G)≥n/2 where δ(G) is the minimum degree in G).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号