共查询到20条相似文献,搜索用时 15 毫秒
1.
Li-Da Tong 《Discrete Applied Mathematics》2009,157(5):1159-1163
For every pair of vertices u,v in a graph, a u-v geodesic is a shortest path from u to v. For a graph G, let IG[u,v] denote the set of all vertices lying on a u-v geodesic. Let S⊆V(G) and IG[S] denote the union of all IG[u,v] for all u,v∈S. A subset S⊆V(G) is a convex set of G if IG[S]=S. A convex hull [S]G of S is a minimum convex set containing S. A subset S of V(G) is a hull set of G if [S]G=V(G). The hull number h(G) of a graph G is the minimum cardinality of a hull set in G. A subset S of V(G) is a geodetic set if IG[S]=V(G). The geodetic number g(G) of a graph G is the minimum cardinality of a geodetic set in G. A subset F⊆V(G) is called a forcing hull (or geodetic) subset of G if there exists a unique minimum hull (or geodetic) set containing F. The cardinality of a minimum forcing hull subset in G is called the forcing hull number fh(G) of G and the cardinality of a minimum forcing geodetic subset in G is called the forcing geodetic number fg(G) of G. In the paper, we construct some 2-connected graph G with (fh(G),fg(G))=(0,0),(1,0), or (0,1), and prove that, for any nonnegative integers a, b, and c with a+b≥2, there exists a 2-connected graph G with (fh(G),fg(G),h(G),g(G))=(a,b,a+b+c,a+2b+c) or (a,2a+b,a+b+c,2a+2b+c). These results confirm a conjecture of Chartrand and Zhang proposed in [G. Chartrand, P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. 36 (2001) 81-94]. 相似文献
2.
A set S of vertices of a graph G is a geodetic set if every vertex of G lies in an interval between two vertices from S. The size of a minimum geodetic set in G is the geodetic number g(G) of G. We find that the geodetic number of the lexicographic product G°H for a non-complete graph H lies between 2 and 3g(G). We characterize the graphs G and H for which g(G°H)=2, as well as the lexicographic products T°H that enjoy g(T°H)=3g(G), when T is isomorphic to a tree. Using a new concept of the so-called geodominating triple of a graph G, a formula that expresses the exact geodetic number of G°H is established, where G is an arbitrary graph and H a non-complete graph. 相似文献
3.
The geodetic numbers of graphs and digraphs 总被引:1,自引:0,他引:1
Chang-hong LU~ 《中国科学A辑(英文版)》2007,50(8):1163-1172
For every two vertices u and v in a graph G,a u-v geodesic is a shortest path between u and v.Let I(u,v)denote the set of all vertices lying on a u-v geodesic.For a vertex subset S,let I(S) denote the union of all I(u,v)for u,v∈S.The geodetic number g(G)of a graph G is the minimum cardinality of a set S with I(S)=V(G).For a digraph D,there is analogous terminology for the geodetic number g(D).The geodetic spectrum of a graph G,denoted by S(G),is the set of geodetic numbers of all orientations of graph G.The lower geodetic number is g~-(G)=minS(G)and the upper geodetic number is g~ (G)=maxS(G).The main purpose of this paper is to study the relations among g(G),g~-(G)and g~ (G)for connected graphs G.In addition,a sufficient and necessary condition for the equality of g(G)and g(G×K_2)is presented,which improves a result of Chartrand,Harary and Zhang. 相似文献
4.
Boštjan Brešar 《Discrete Mathematics》2008,308(23):5555-5561
A set S of vertices of a graph G is a geodetic set if every vertex of G lies in at least one interval between the vertices of S. The size of a minimum geodetic set in G is the geodetic number of G. Upper bounds for the geodetic number of Cartesian product graphs are proved and for several classes exact values are obtained. It is proved that many metrically defined sets in Cartesian products have product structure and that the contour set of a Cartesian product is geodetic if and only if their projections are geodetic sets in factors. 相似文献
5.
For a connected graph G of order p≥2, a set S⊆V(G) is a geodetic set of G if each vertex v∈V(G) lies on an x-y geodesic for some elements x and y in S. The minimum cardinality of a geodetic set of G is defined as the geodetic number of G, denoted by g(G). A geodetic set of cardinality g(G) is called a g-set of G. A connected geodetic set of G is a geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by gc(G). A connected geodetic set of cardinality gc(G) is called a gc-set of G. A connected geodetic set S in a connected graph G is called a minimal connected geodetic set if no proper subset of S is a connected geodetic set of G. The upper connected geodetic number is the maximum cardinality of a minimal connected geodetic set of G. We determine bounds for and determine the same for some special classes of graphs. For positive integers r,d and n≥d+1 with r≤d≤2r, there exists a connected graph G with , and . Also, for any positive integers 2≤a<b≤c, there exists a connected graph G such that g(G)=a, gc(G)=b and . A subset T of a gc-set S is called a forcing subset for S if S is the unique gc-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected geodetic number of S, denoted by fc(S), is the cardinality of a minimum forcing subset of S. The forcing connected geodetic number of G, denoted by fc(G), is fc(G)=min{fc(S)}, where the minimum is taken over all gc-sets S in G. It is shown that for every pair a,b of integers with 0≤a≤b−4, there exists a connected graph G such that fc(G)=a and gc(G)=b. 相似文献
6.
A Steiner tree for a set S of vertices in a connected graph G is a connected subgraph of G with a smallest number of edges that contains S. The Steiner interval I(S) of S is the union of all the vertices of G that belong to some Steiner tree for S. If S={u,v}, then I(S)=I[u,v] is called the interval between u and v and consists of all vertices that lie on some shortest u-v path in G. The smallest cardinality of a set S of vertices such that ?u,v∈SI[u,v]=V(G) is called the geodetic number and is denoted by g(G). The smallest cardinality of a set S of vertices of G such that I(S)=V(G) is called the Steiner geodetic number of G and is denoted by sg(G). We show that for distance-hereditary graphs g(G)?sg(G) but that g(G)/sg(G) can be arbitrarily large if G is not distance hereditary. An efficient algorithm for finding the Steiner interval for a set of vertices in a distance-hereditary graph is described and it is shown how contour vertices can be used in developing an efficient algorithm for finding the Steiner geodetic number of a distance-hereditary graph. 相似文献
7.
We investigate the relation between the multichromatic number (discussed by Stahl and by Hilton, Rado and Scott) and the star chromatic number (introduced by Vince) of a graph. Denoting these by χ* and η*, the work of the above authors shows that χ*(G) = η*(G) if G is bipartite, an odd cycle or a complete graph. We show that χ*(G) ≤ η*(G) for any finite simple graph G. We consider the Kneser graphs , for which χ* = m/n and η*(G)/χ*(G) is unbounded above. We investigate particular classes of these graphs and show that η* = 3 and η* = 4; (n ≥ 1), and η* = m - 2; (m ≥ 4). © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 137–145, 1997 相似文献
8.
《European Journal of Operational Research》2006,175(1):238-245
A vertex set D in graph G is called a geodetic set if all vertices of G are lying on some shortest u–v path of G, where u, v ∈ D. The geodetic number of a graph G is the minimum cardinality among all geodetic sets. A subset S of a geodetic set D is called a forcing subset of D if D is the unique geodetic set containing S. The forcing geodetic number of D is the minimum cardinality of a forcing subset of D, and the lower and the upper forcing geodetic numbers of a graph G are the minimum and the maximum forcing geodetic numbers, respectively, among all minimum geodetic sets of G. In this paper, we find out the lower and the upper forcing geodetic numbers of block–cactus graphs. 相似文献
9.
Given a simple connected graph G = (V, E) the geodetic closure of a subset S of V is the union of all sets of nodes lying on some geodesic (or shortest path) joining a pair of nodes . The geodetic number, denoted by g(G), is the smallest cardinality of a node set S
* such that I[S
*] = V. In “The geodetic number of a graph”, [Harary et al. in Math. Comput. Model. 17:89–95, 1993] propose an incorrect algorithm to find the geodetic number of a graph G. We provide counterexamples and show why the proposed approach must fail. We then develop a 0–1 integer programming model
to find the geodetic number. Computational results are given. 相似文献
10.
11.
12.
13.
The crossing number, cr(G), of a graph G is the least number of crossing points in any drawing of G in the plane. According to the Crossing Lemma of M. Ajtai, V. Chvátal, M. Newborn, E. Szemerédi, Theory and Practice of Combinatorics, North‐Holland, Amsterdam, New York, 1982, pp. 9–12 and F. T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, 1983, the crossing number of any graph with n vertices and e>4n edges is at least constant times e3/n2. Apart from the value of the constant, this bound cannot be improved. We establish some stronger lower bounds under the assumption that the distribution of the degrees of the vertices is irregular. In particular, we show that if the degrees of the vertices are d1?d2?···?dn, then the crossing number satisfies \begin{eqnarray*}{\rm{cr}}(G)\geq \frac{c_{1}}{n}\end{eqnarray*} with \begin{eqnarray*}{\textstyle\sum\nolimits_{{{i}}={{{1}}}}^{{{n}}}}{{id}}_{{{i}}}^{{{3}}}-{{c}}_{{{2}}}{{n}}^{{{2}}}\end{eqnarray*}, and that this bound is tight apart from the values of the constants c1, c2>0. Some applications are also presented. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 12–21, 2010 相似文献
14.
Suh-Ryung Kim 《Discrete Applied Mathematics》2008,156(18):3522-3524
For a graph G, it is known to be a hard problem to compute the competition number k(G) of the graph G in general. In this paper, we give an explicit formula for the competition numbers of complete tripartite graphs. 相似文献
15.
16.
For given graphs G and H, the Ramsey number R(G,H) is the smallest natural number n such that for every graph F of order n: either F contains G or the complement of F contains H. In this paper we investigate the Ramsey number of a disjoint union of graphs . For any natural integer k, we contain a general upper bound, R(kG,H)?R(G,H)+(k-1)|V(G)|. We also show that if m=2n-4, 2n-8 or 2n-6, then R(kSn,Wm)=R(Sn,Wm)+(k-1)n. Furthermore, if |Gi|>(|Gi|-|Gi+1|)(χ(H)-1) and R(Gi,H)=(χ(H)-1)(|Gi|-1)+1, for each i, then . 相似文献
17.
18.
Lingsheng Shi 《Journal of Graph Theory》2005,50(3):175-185
The Ramsey number R(G1,G2) of two graphs G1 and G2 is the least integer p so that either a graph G of order p contains a copy of G1 or its complement Gc contains a copy of G2. In 1973, Burr and Erd?s offered a total of $25 for settling the conjecture that there is a constant c = c(d) so that R(G,G)≤ c|V(G)| for all d‐degenerate graphs G, i.e., the Ramsey numbers grow linearly for d‐degenerate graphs. We show in this paper that the Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs, arrangeable graphs, and crowns for example. This implies that the Ramsey numbers grow linearly for degenerate graphs versus graphs with bounded maximum degree, planar graphs, or graphs without containing any topological minor of a fixed clique, etc. © 2005 Wiley Periodicals, Inc. J Graph Theory 相似文献
19.
设 G=(V,E) 为简单图,图 G 的每个至少有两个顶点的极大完全子图称为 G 的一个团. 一个顶点子集 S\subseteq V 称为图 G 的团横贯集, 如果 S 与 G 的所有团都相交,即对于 G 的任意的团 C 有 S\cap{V(C)}\neq\emptyset. 图 G 的团横贯数是图 G 的最小团横贯集所含顶点的数目,记为~${\large\tau}_{C}(G)$. 证明了棱柱图的补图(除5-圈外)、非奇圈的圆弧区间图和 Hex-连接图这三类无爪图的团横贯数不超过其阶数的一半. 相似文献
20.