首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We show that a set of graphs has bounded tree-width or bounded path-width if and only if the corresponding set of line graphs has bounded clique-width or bounded linear clique-width, respectively. This relationship implies some interesting algorithmic properties and re-proves already known results in a very simple way. It also shows that the minimization problem for NLC-width is NP-complete.  相似文献   

2.
Given a graph G, the graph Gl has the same vertex set and two vertices are adjacent in Gl if and only if they are at distance at most l in G. The l-coloring problem consists in finding an optimal vertex coloring of the graph Gl, where G is the input graph. We show that, for any fixed value of l, the l-coloring problem is polynomial when restricted to graphs of bounded NLC-width (or clique-width), if an expression of the graph is also part of the input. We also prove that the NLC-width of Gl is at most 2(l+1)nlcw(G).  相似文献   

3.
It is shown that a line graph G has clique-width at most 8k+4 and NLC-width at most 4k+3, if G contains a vertex whose non-neighbours induce a subgraph of clique-width k or NLC-width k in G, respectively. This relation implies that co-gem-free line graphs have clique-width at most 14 and NLC-width at most 7.It is also shown that in a line graph the neighbours of a vertex induce a subgraph of clique-width at most 4 and NLC-width at most 2.  相似文献   

4.
We study algorithms for ?SAT and its generalized version ?GENSAT, the problem of computing the number of satisfying assignments of a set of propositional clauses Σ. For this purpose we consider the clauses given by their incidence graph, a signed bipartite graph SI(Σ), and its derived graphs I(Σ) and P(Σ).It is well known, that, given a graph of tree-width k, a k-tree decomposition can be found in polynomial time. Very recently Oum and Seymour have shown that, given a graph of clique-width k, a (23k+2-1)-parse tree witnessing clique-width can be found in polynomial time.In this paper we present an algorithm for ?GENSAT for formulas of bounded tree-width k which runs in time 4k(n+n2·log2(n)), where n is the size of the input. The main ingredient of the algorithm is a splitting formula for the number of satisfying assignments for a set of clauses Σ where the incidence graph I(Σ) is a union of two graphs G1 and G2 with a shared induced subgraph H of size at most k. We also present analogue improvements for algorithms for formulas of bounded clique-width which are given together with their derivation.This considerably improves results for ?SAT, and hence also for SAT, previously obtained by Courcelle et al. [On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic, Discrete Appl. Math. 108 (1-2) (2001) 23-52].  相似文献   

5.
We study representations of polynomials over a field K from the point of view of their expressive power. Three important examples for the paper are polynomials arising as permanents of bounded tree-width matrices, polynomials given via arithmetic formulas, and families of so called CNF polynomials. The latter arise in a canonical way from families of Boolean formulas in conjunctive normal form. To each such CNF formula there is a canonically attached incidence graph. Of particular interest to us are CNF polynomials arising from formulas with an incidence graph of bounded tree- or clique-width.We show that the class of polynomials arising from families of polynomial size CNF formulas of bounded tree-width is the same as those represented by polynomial size arithmetic formulas, or permanents of bounded tree-width matrices of polynomial size. Then, applying arguments from communication complexity we show that general permanent polynomials cannot be expressed by CNF polynomials of bounded tree-width. We give a similar result in the case where the clique-width of the incidence graph is bounded, but for this we need to rely on the widely believed complexity theoretic assumption #P?FP/poly.  相似文献   

6.
We show that the middle bit of the multiplication of two n-bit integers can be computed by an ordered binary decision diagram (OBDD) of size less than 2.8·26n/5. This improves the previously known upper bound of by Woelfel (New Bounds on the OBDD-size of integer multiplication via Universal Hashing, J. Comput. System Sci. 71(4) (2005) 520-534). The experimental results suggest that our exponent of 6n/5 is optimal or at least very close to optimal. A general upper bound of O(23n/2) on the OBDD size of each output bit of the multiplication is also presented.  相似文献   

7.
The k-power graph of a graph G is a graph with the same vertex set as G, in that two vertices are adjacent if and only if, there is a path between them in G of length at most k. A k-tree-power graph is the k-power graph of a tree, a k-leaf-power graph is the subgraph of some k-tree-power graph induced by the leaves of the tree.We show that (1) every k-tree-power graph has NLC-width at most k+2 and clique-width at most k+2+max{?k2??1,0}, (2) every k-leaf-power graph has NLC-width at most k and clique-width at most k+max{?k2??2,0}, and (3) every k-power graph of a graph of tree-width l has NLC-width at most (k+1)l+1?1, and clique-width at most 2?(k+1)l+1?2.  相似文献   

8.
9.
Let μ(G) and ω(G) be the Colin de Verdière and clique numbers of a graph G, respectively. It is well-known that μ(G)?ω(G)-1 for all graphs. Our main results include μ(G)?ω(G) for all chordal graphs; μ(G)?tw(G)+1 for all graphs (where tw is the tree-width), and a characterization of those split (⊆ chordal) graphs for which μ(G)=ω(G). The bound μ(G)?tw(G)+1 improves a result of Colin de Verdière by a factor of 2.  相似文献   

10.
The motivating problem for this paper is to find the expected covering time of a random walk on a balanced binary tree withn vertices. Previous upper bounds for general graphs ofO(|V| |E|)(1) andO(|V| |E|/d min)(2) imply an upper bound ofO(n 2). We show an upper bound on general graphs ofO( |E| log |V|), which implies an upper bound ofO(n log2 n). The previous lower bound was (|V| log |V|) for trees.(2) In our main result, we show a lower bound of (|V| (log d max |V|)2) for trees, which yields a lower bound of (n log2 n). We also extend our techniques to show an upper bound for general graphs ofO(max{E Ti} log |V|).  相似文献   

11.
Rank-width is a structural graph measure introduced by Oum and Seymour and aimed at better handling of graphs of bounded clique-width. We propose a formal mathematical framework and tools for easy design of dynamic algorithms running directly on a rank-decomposition of a graph (on contrary to the usual approach which translates a rank-decomposition into a clique-width expression, with a possible exponential jump in the parameter). The main advantage of this framework is a fine control over the runtime dependency on the rank-width parameter. Our new approach is linked to a work of Courcelle and Kanté [7] who first proposed algebraic expressions with a so-called bilinear graph product as a better way of handling rank-decompositions, and to a parallel recent research of Bui-Xuan, Telle and Vatshelle.  相似文献   

12.
A conjecture of V.G. Vizing states that if G is a Δ-critical graph of order ? and size m, thenm ≥ 1/2(n(Δ - 1) + 3). This conjecture has been verified for Δ ≤ 4 by I.T. Jakobsen, L.W. Beineke, S. Fiorini and H.P. Yap. In this paper, we prove the conjecture for Δ = 5.  相似文献   

13.
14.
Given an edge- or vertex-weighted graph or digraph and a list of source-sink pairs, the minimum multicut problem consists in selecting a minimum weight set of edges or vertices whose removal leaves no path from each source to the corresponding sink. This is a classical NP-hard problem, and we show that the edge version becomes tractable in bounded tree-width graphs if the number of source-sink pairs is fixed, but remains NP-hard in directed acyclic graphs and APX-hard in bounded tree-width and bounded degree unweighted digraphs. The vertex version, although tractable in trees, is proved to be NP-hard in unweighted cacti of bounded degree and bounded path-width.  相似文献   

15.
We investigate the complexity of several domination problems on the complements of bounded tolerance graphs and the complements of trapezoid graphs. We describe an O(n2 log5 n) time and O(n2) space algorithm to solve the domination problem on the complement of a bounded tolerance graph, given a square embedding of that graph. We also prove that domination, connected domination and total domination are all NP-complete on co-trapezoid graphs.  相似文献   

16.
A colouring of a graph is a function such that for every . A -regular list assignment of is a function with domain such that for every , is a subset of of size . A colouring of respects a -regular list assignment of if for every . A graph is -choosable if for every -regular list assignment of , there exists a colouring of that respects . We may also ask if for a given -regular list assignment of a given graph , there exists a colouring of that respects . This yields the -Regular List Colouring problem. For , we determine a family of classes of planar graphs, such that either -Regular List Colouring is -complete for instances with , or every is -choosable. By using known examples of non--choosable and non--choosable graphs, this enables us to classify the complexity of -Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs, and planar graphs with no -cycles and no -cycles. We also classify the complexity of -Regular List Colouring and a number of related colouring problems for graphs with bounded maximum degree.  相似文献   

17.
The size of ordered binary decision diagrams (OBDDs) strongly depends on the chosen variable ordering. It is an obvious heuristic to use symmetric variable orderings, i.e., variable orderings where symmetric variables are arranged adjacently. In order to evaluate this heuristic, methods for estimating the OBDD size for random partially symmetric functions are presented. Characterizations of cases where, with high probability, only symmetric variable orderings and, with high probability, only nonsymmetric variable orderings lead to minimum OBDD size are obtained. For this analysis estimates for the number of different blocks of random Boolean matrices are used. © 1998 John Wiley & Sons, Inc. Random Struct. Alg., 13, 49–70, 1998  相似文献   

18.
Covering all edges of a graph by a minimum number of cliques is a well known NP-hard problem. For the parameter k being the maximal number of cliques to be used, the problem becomes fixed parameter tractable. However, assuming the Exponential Time Hypothesis, there is no kernel of subexponential size in the worst-case.We study the average kernel size for random intersection graphs with n vertices, edge probability p, and clique covers of size k. We consider the well-known set of reduction rules of Gramm, Guo, Hüffner, and Niedermeier (2009) [17] and show that with high probability they reduce the graph completely if p is bounded away from 1 and k<clogn for some constant c>0. This shows that for large probabilistic graph classes like random intersection graphs the expected kernel size can be substantially smaller than the known exponential worst-case bounds.  相似文献   

19.
Let k be a fixed, positive integer. We give an algorithm which computes the Tutte polynomial of any graph G of treewidth at most k in time O(n2+7 log2 c), where c is twice the number of partitions of a set with 3k + 3 elements and n the number of vertices of G.  相似文献   

20.
《Discrete Mathematics》2021,344(12):112604
A well-known theorem of Vizing states that if G is a simple graph with maximum degree Δ, then the chromatic index χ(G) of G is Δ or Δ+1. A graph G is class 1 if χ(G)=Δ, and class 2 if χ(G)=Δ+1; G is Δ-critical if it is connected, class 2 and χ(Ge)<χ(G) for every eE(G). A long-standing conjecture of Vizing from 1968 states that every Δ-critical graph on n vertices has at least (n(Δ1)+3)/2 edges. We initiate the study of determining the minimum number of edges of class 1 graphs G, in addition, χ(G+e)=χ(G)+1 for every eE(G). Such graphs have intimate relation to (P3;k)-co-critical graphs, where a non-complete graph G is (P3;k)-co-critical if there exists a k-coloring of E(G) such that G does not contain a monochromatic copy of P3 but every k-coloring of E(G+e) contains a monochromatic copy of P3 for every eE(G). We use the bound on the size of the aforementioned class 1 graphs to study the minimum number of edges over all (P3;k)-co-critical graphs. We prove that if G is a (P3;k)-co-critical graph on nk+2 vertices, thene(G)k2(nk2ε)+(k/2+ε2), where ε is the remainder of nk/2 when divided by 2. This bound is best possible for all k1 and n3k/2+2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号