首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The generalized Riemann problem for gas dynamic combustion in a neighborhood of the origin t > 0 in the (x, t) plane is considered. Under the modified entropy conditions, the unique solutions are constructed, which are the limits of the selfsimilar Zeldovich-von Neumann-Dring (ZND) combustion model. The results show that, for some cases, there are intrinsical differences between the structures of the perturbed Riemann solutions and the corresponding Riemann solutions. Especially, a strong detonation in the...  相似文献   

2.
基于Yao建立的电磁弹性固体广义变分原理,运用关于非传统Hamilton型广义变分原理的方法,建立了电磁弹性动力学初边值问题的12类变量广义变分原理,可反映该问题的全部特征,其独立变分变量为该问题的全部变量,即位移、速度、动量、应变、应力、电位移、磁感应强度、电场强度、磁场强度、电标量势、磁标量势和磁矢量势.本文建立的...  相似文献   

3.
运用一种边界型无网格算法——边界粒子法求解Robin反问题,结合Tikhonov正则化技术消除反问题的不适定性。该方法仅需边界测量数据,计算精度高,特别适用于反问题的求解。数值算例显示该方法在求解Robin反问题上具有很好的稳定性和收敛性。  相似文献   

4.
通过全原子分子动力学(MD)与等温耗散粒子动力学(DPD)的串行耦合,提出了面心立方金属粗粒化模型的建立方法。该方法将一定数量的原子粗粒化为单个介观 DPD 粒子,假设 DPD 粒子间作用势的表达式为Sutton-Chen势函数形式,利用遗传算法,以 MD和DPD计算的单晶金属常温(298 K)等温线相一致为目标,确定了DPD粒子间作用势函数的参数。对单晶铜纳米棒的轴向拉伸开展 MD 和 DPD 对比模拟,发现在纳米棒弹性响应阶段,两者计算结果吻合较好,而屈服应力和屈服应变存在一定差距。建议在优化 DPD势函数参数时,引入更多的材料力学响应信息,进一步提高介观DPD模型的准确性。  相似文献   

5.
Multiresolution analysis based on the reproducing kernel particle method (RKPM) is developed for computational fluid dynamics. An algorithm incorporating multiple-scale adaptive refinement is introduced. The concept of using a wavelet solution as an error indicator is also presented. A few representative numerical examples are solved to illustrate the performance of this new meshless method. Results show that the RKPM is a good candidate for tackling the widespread large-scale problems in fluid dynamics. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
The dissipative particle dynamics mesoscopic simulation method is analyzed thoroughly by identifying the scaling factors necessary to simulate a multicomponent system. A new framework of general expressions is derived relating the parameters in the system to their dimensionless quantities. The consistent non‐dimensionalization used in this paper serves to connect the previous models in the literature. When the scaling factors are based on the solvent in a multicomponent system, the system of equations reduces to the well‐known Groot and Warren model. Validation results for ideal, simple and binary immiscible fluids are presented and compared with established results from the literature. The framework established herein is an important step toward the practical application of dissipative particle dynamics for the analysis of complex fluid systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The initial problem for second order linear evolution equation systems is discussed by using the contraction semigroup theory. A kind of initial value problem for second order is also discussed with variable coefficients for evolution equations by using the analytical semigroup theory, and is unified with the solutions of the initial value problem for this class of equations and those of first order temporally inhomogeneous evolution equations. This is an important class of equations in mathematical mechanics.  相似文献   

8.
The use of the finite volume particle (FVP) method is validated for three‐dimensional sloshing dynamics with a free surface by comparing with results from experiments. In the first part, two typical sloshing experiments for a single liquid phase are simulated, and slosh characteristics that include the free surface behavior and hydrodynamic pressure are reported. Moreover, the influences of the circular wall geometry and spatial resolution in the simulation are studied in a sensitivity analysis. In the second part, two sloshing problems with solid bodies are simulated to preliminarily verify the applicability of the FVP method to three‐dimensional solid bodies' motion in liquid flow. Good agreement between simulations and corresponding experiments indicates that the present FVP method well reproduces three‐dimensional sloshing behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
IntroductionThepurposeofthispaperistodevelopacuratediferencemethodforthefolowinginitialvalueproblem,whichisinsingularperturba...  相似文献   

10.
11.
The boundary conditions represented by polygons in moving particle semi-implicit (MPS) method (Koshizuka and Oka, Nuclear Science and Engineering, 1996 Koshizuka, S., and Y. Oka. 1996. “Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid.” Nuclear Science and Engineering 123: 421434.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]) have been widely used in the industry simulations since it can simply simulate complex geometry with high efficiency. However, the inaccurate particle number density near non-planar wall boundaries dramatically affects the accuracy of simulations. In this paper, we propose an initial boundary particle arrangement technique coupled with the wall weight function method (Zhang et al. Transaction of JSCES, 2015 Zhang, T.G., S. Koshizuka, K. Shibata, K. Murotani, and E. Ishii. 2015. “Improved Wall Weight Function With Polygon Boundary in Moving Particle Semi-Implicit Method.” Transaction of JSCES. No. 20150012. [Google Scholar]) to improve the particle number density near slopes and curved surfaces with boundary conditions represented by polygons in three dimensions. Two uniform grids are utilized in the proposed technique. The grid points in the first uniform grid are used to construct boundary particles, and the second uniform grid stores the same information as in the work by Zhang et al. The wall weight functions of the grid points in the second uniform grid are calculated by newly constructed boundary particles. The wall weight functions of the fluid particles are interpolated from the values stored on the grid points in the second uniform grid. Because boundary particles are located on the polygons, complex geometries can be accurately represented. The proposed method can dramatically improve the particle number density and maintain the high efficiency. The performance of the previously proposed wall weight function (Zhang et al.) with the boundary particle arrangement technique is verified in comparison with the wall weight function without boundary particle arrangement by investigating two example geometries. The simulations of a water tank with a wedge and a complex geometry show the general applicability of the boundary particle arrangement technique to complex geometries and demonstrate its improvement of the wall weight function near the slopes and curved surfaces.  相似文献   

12.
The effect of periodic rectangular wall roughness on planar nanochannel flow is investigated by dissipative particle dynamics simulation. The wall protrusion length is varied, and its effect on the flow is examined. Analysis of particle trajectories and average residence time reveals temporary trapping of fluid particles inside the rectangular cavities for a considerable amount of time. This trapping affects the density, velocity, pressure, and temperature distribution inside and close to the cavities. Inside the cavities, low‐velocity regions and regions of high density related to high pressure and high temperature are observed. When compared with that of the channel with flat walls case, lower flow velocities, temperatures, and pressures are observed for grooved channels. The reduction of the above quantities is more pronounced as the protrusion length, that is, the roughness characteristic length, decreases. Finally, the relation of friction factor, f, with the flow Reynolds number is discussed. The model predicts = constant in the range . The results of this work are of direct relevance to the design of nanofluidic devices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Dissipative particle dynamics (DPD)‐based models for two‐phase flows are attractive for simulating fluid flow at the sub‐micron level. In this study, we extend a DPD‐based two‐phase model for a single‐component fluid to a two‐component fluid. The approach is similar to that employed in the DPD formulation for two immiscible liquids. Our approach allows us to control the density ratio of the liquid phase to the gas phase, which is represented independently by the two components, without changing the temperature of the liquid phase. To assess the accuracy of the model, we carry out simulations of Rayleigh–Taylor instability and compare the penetration rates of the spikes and bubbles formed during the simulations with prior results reported in the literature. We show that the results are in agreement with both experimental data and predictions from Youngs' model. We report these results for a broad range of Atwood numbers to illustrate the capability of the model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Dissipative particle dynamics (DPD) was applied to fluid flow in irregular geometries using non‐orthogonal transformation, where an irregular domain is transformed into a simple rectangular domain. Transformation for position and velocity was used to relate the physical and computational domains. This approach was described by simulating fluid flow inside a two‐dimensional convergent–divergent nozzle. The nozzle geometry is controlled by the contraction ratio (CR) in the middle of the channel. The range of Reynolds number and CR, in this paper, was Re = 10hbox??200 and CR = 0.8 and 0.6, respectively. The DPD results were validated against in‐house computational fluid dynamic (CFD) finite volume code based on the stream function vorticity approach. The results revealed an excellent agreement between DPD and CFD. The maximum deviation between the DPD and CFD results was within 2%. Local and average coefficients of friction was calculated and it compared well with the CFD results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Smoothed dissipative particle dynamics (SDPD) is a mesoscopic particle method that allows to select the level of resolution at which a fluid is simulated. The numerical integration of its equations of motion still suffers from the lack of numerical schemes satisfying all the desired properties such as energy conservation and stability. Similarities between SDPD and dissipative particle dynamics with energy (DPDE) conservation, which is another coarse-grained model, enable adaptation of recent numerical schemes developed for DPDE to the SDPD setting. In this article, a Metropolis step in the integration of the fluctuation/dissipation part of SDPD is introduced to improve its stability.  相似文献   

16.
We investigate the behavior of dissipative particle dynamics(DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espa?nol, P.(Large scale and mesoscopic hydrodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15),7271–7281(2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions(CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime,we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters.  相似文献   

17.
The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequencing has shown a broad application prospect and attracted vast research interests since it was proposed. In the present study, the dynamics of the electric-driven translocation of a homopolymer through a nanopore is investigated by the dissipative particle dynamics(DPD), in which the homopolymer is modeled as a worm-like chain(WLC). The DPD simulations show that the polymer chain undergoes conformation changes during the translocation process. The different structures of the polymer in the translocation process, i.e., single-file, double folded, and partially folded, and the induced current blockades are analyzed. It is found that the current blockades have different magnitudes due to the polymer molecules traversing the pore with different folding conformations. The nanoscale vortices caused by the concentration polarization layers(CPLs) in the vicinity of the sheet are also studied. The results indicate that the translocation of the polymer has the effect of eliminating the vortices in the polyelectrolyte solution. These findings are expected to provide the theoretical guide for improving the nanopore sequencing technique.  相似文献   

18.
Some integral identities of smooth solution of inhomogeneous initial boundary value problem of Ginzburg-Landau equations were deduced, by which a priori estimates of the square norm on boundary of normal derivative and the square norm of partial derivatives were obtained. Then the existence of global weak solution of inhomogeneous initial-boundary value problem of Ginzburg-Landau equations was proved by the method of approximation technique and a priori estimates and making limit.  相似文献   

19.
Wettability alternation phenomena is considered one of the most important enhanced oil recovery (EOR) mechanisms in the chemical flooding process and induced by the adsorption of surfactant on the rock surface. These phenomena are studied by a mesoscopic method named as dissipative particle dynamics (DPD). Both the alteration phenomena of water-wet to oil-wet and that of oil-wet to water-wet are simulated based on reasonable definition of interaction parameters between beads. The wetting hysteresis phenomenon and the process of oil-drops detachment from rock surfaces with different wettability are simulated by adding long-range external forces on the fluid particles. The simulation results show that, the oil drop is liable to spread on the oil-wetting surface and move in the form of liquid film flow, whereas it is likely to move as a whole on the waterwetting surface. There are the same phenomena occuring in wettability-alternated cases. The results also show that DPD method provides a feasible approach to the problems of seepage flow with physicochemical phenomena and can be used to study the mechanism of EOR of chemical flooding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号