首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.  相似文献   

2.
层状饱和土Biot固结问题状态空间法   总被引:6,自引:1,他引:6  
针对饱和多孔介质空间非轴对Biot固结问题,引入状态变量,构造了两组相比独立的状态变量方程,利用Fourier级数和Laplace-Hankel变换,将状态变量方程转换为两组一阶常微分方程组,提出了均质饱和多孔介质空间非轴对称Biot固结问题的传递矩阵,得到以状态变量和传递矩阵乘积的形式表示的均质饱和多孔介质空间非轴对称Biot固结问题的解,利用层间完全接触的条件,可得到N层饱和多孔介质空间非轴对称Biot固结问题的一般解析表达式,文中考虑几种不同的边界条件,分析了两个算例,数值结果表明该方法具有较高的计算精度和良好的计算稳定性。  相似文献   

3.
The history of stresses and creep strains of a rotating composite cylinder made of an aluminum matrix reinforced by silicon carbide particles is investigated. The effect of uniformly distributed SiC micro- and nanoparticles on the initial thermo-elastic and time-dependent creep deformation is studied. The material creep behavior is described by Sherby’s constitutive model where the creep parameters are functions of temperature and the particle sizes vary from 50 nm to 45.9 μm. Loading is composed of a temperature field due to outward steady-state heat conduction and an inertia body force due to cylinder rotation. Based on the equilibrium equation and also stress-strain and strain-displacement relations, a constitutive second-order differential equation for displacements with variable and time-dependent coefficients is obtained. By solving this differential equation together with the Prandtl–Reuss relation and the material creep constitutive model, the history of stresses and creep strains is obtained. It is found that the minimum effective stresses are reached in a material reinforced by uniformly distributed SiC particles with the volume fraction of 20% and particle size of 50 nm. It is also found that the effective and tangential stresses increase with time at the inner surface of the composite cylinder; however, their variation at the outer surface is insignificant.  相似文献   

4.
A two-dimensional equation of generalized thermoelasticity with one relaxation time in an isotropic elastic medium with the elastic modulus dependent on temperature and with an internal heat source is established using a Laplace transform in time and a Fourier transform in the space variable. The problem for the transforms is solved in the space of states. The problem of heating of the upper and the lower surface of a plate of great thickness by an exponential time law is considered. Expressions for displacements, temperature, and stresses are obtained in the transform domain. The inverse transform is obtained using a numerical method. Results of solving the problem are presented in graphical form. Comparisons are made with the results predicted by the coupled theory and with the case of temperature independence of the elastic modulus.  相似文献   

5.
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.  相似文献   

6.
A novel layerwise C0-type higher order shear deformation theory (layerwise C0-type HSDT) for the analysis of laminated composite and sandwich plates is proposed. A C0-type HSDT is used in each lamina layer and the continuity of in-plane displacements and transverse shear stresses at inner-laminar layer is consolidated. The present layerwise theory retains only seven variables without increasing the number of variables when the number of lamina layers are intensified. The shear stresses through the plate thickness derived from the constitutive equation of the present theory have the same shape as those calculated from the equilibrium equation. In addition, the artificial constraints are added in the principle of virtual displacements (PVD) and are certainly fulfilled through a penalty approach. In this paper, two C0-continuity numerical methods, such as the Finite Element Method (FEM) and Bézier isogeometric element (BIEM) are utilized to solve a discrete system of equations derived from the PVD. Several numerical examples with various geometries, aspect ratios, stiffness ratios, and boundary conditions are investigated and compared with the 3D elasticity solution, the analytical, as well as, numerical solutions based on various plate theories.  相似文献   

7.
This paper deals with some comparison results for displacements and stresses in a periodically stratified elastic semi-infinite layer determined within the framework of two approaches: (1) based on the homogenized model with microlocal parameters [Woźniak (1987) Int J Eng Sci 25: 483–499; Woźniak (1987) Bull Ac Pol Tech Sci 35: 143–151]; (2) obtained directly from the theory of elasticity. A body is assumed to be composed of n elastic two-component periodically repeated laminae. The perfect mechanical bonding between the layers is assumed. The normal displacements and zero shear stresses on the boundary being a cross-section of the composite component are taken into account. The lateral boundary surfaces are assumed to be rigid fixed. The obtained results from the two approaches are compared and presented in the form of figures.  相似文献   

8.
The paper analyses theoretically the surface vibration induced by a point load moving uniformly along a infinitely long beam embedded in a two-dimensional viscoelastic layer. The beam is placed parallel to the traction-free surface and the layer under the beam is assumed to be a half space. The response due to a harmonically varying load is investigated for different load frequencies. The influence of the layer damping and moving load speed on the level of vibrations at the surface is analysed and analytical closed form solutions in the integral form for the displacement amplitude and the amplitude spectra are derived. Approximate displacement values depending on Young’s modulus and mass density of layers are obtained. The mathematical model is described by the Euler–Bernoulli beam equation, Navier’s elastodynamic equation of motion for the elastic medium and appropriate boundary and continuity conditions. A special approximation method based on the wavelet theory is used for calculation of the displacements at the surface.  相似文献   

9.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

10.
Axisymmetric stresses around a cylindrical crack in an interfacial cylindrical layer between an infinite elastic medium with a cylindrical cavity and a circular elastic cylinder made of another material have been determined. The material constants of the layer vary continuously from those of the infinite medium to those of the cylinder. Tension surrounding the cylinder and perpendicular to the axis of the cylinder is applied to the composite materials. To solve this problem, the interfacial layer is divided into several layers with different material properties. The boundary conditions are reduced to dual integral equations. The differences in the crack faces are expanded in a series so as to satisfy the conditions outside the crack. The unknown coefficients in the series are solved using the conditions inside the crack. Numerical calculations are performed for several thicknesses of the interfacial layer. Using these numerical results, the stress intensity factors are evaluated for infinitesimal thickness of the layer.  相似文献   

11.
Stresses are determined for a finite cylindrical crack that is propagating with a constant velocity in a nonhomogeneous cylindrical elastic layer, sandwiched between an infinite elastic medium and a circular elastic cylinder made from another material. The Galilean transformation is employed to express the wave equations in terms of coordinates that are attached to the moving crack. An internal gas pressure is then applied to the crack surfaces. The solution is derived by dividing the nonhomogeneous interfacial layer into several homogeneous cylindrical layers with different material properties. The boundary conditions are reduced to two pairs of dual integral equations. These equations are solved by expanding the differences in the crack surface displacements into a series of functions that are equal to zero outside the crack. The Schmidt method is then used to solve for the unknown coefficients in the series. Numerical calculations for the stress intensity factors were performed for speeds and composite material combinations.  相似文献   

12.
本文建立多圆荷载作用下弹性半空间体上薄板的挠度与应力的计算式。荷载数量及分布任意,每个圆荷载密度与轮迹半径彼此相异。对计算式中的反常积分及级数的收敛性予以证明。对含振荡函数反常积分建议一种方便的算法。  相似文献   

13.
In this research, the bending analysis of an arched bridge is presented based on a mixed first-order thick beam one dimensional plate theory. The present arched bridge is considered as a beam with boundary conditions at its edges, which may be simply-supported, and between these two edges, the beam may have quadratic thickness variation. The bridge consists of two layers; the upper flat one is made from an isotropic homogeneous material such as ceramic, and the lower arched layer is made from an isotropic non-homogeneous functionally graded ceramic-metal material. The upper-surface of the arched layer, which represents the interface between the two layers, is ceramic-rich material while the lower-surface of the arched layer is metal-rich material. This structure eliminates interface problem of the arched bridge and thus the stress distributions are smooth. A closed form solution is developed for the static response of such bridge subjected to different distributed loads. The effects of many parameters on the displacements and stresses are investigated. The sample numerical examples presented herein for bending response of the present arched bridge should serve as references for future comparisons.  相似文献   

14.
受分布载荷复合材料层合梁应力分析的一般理论   总被引:1,自引:0,他引:1  
为了克服层合梁经典理论的缺点,提高层间应力的计算精度,提出了受分布载荷层合梁应力分析的一般理论。首先根据叠加原理将原始受力状态分解成对称与反对称受力状态。然后用正交完备的三角级数和勒让德级数构造这两种受力状态中每一铺层与层间胶层的位移场,并应用广义势能原理确定位移场中的待定系数,从而确定层合梁的位移场和应力场。同时,单层梁与单层梁之间的胶层被视为各向同性材料并且与其它材料层具有相似的力学特性,即具有有限厚度、有限弹性常数。计算结果显示,这种解法的收敛性非常好,根据物理方程与根据平衡方程得到的横向剪应力和正应力分布非常一致。  相似文献   

15.
A numerical procedure is presented for the analysis of the elastic field due to an edge dislocation in a multilayered composite. The multilayered composite consists of n perfectly bonded layers having different material properties and thickness, and two half-planes adhere to the top and bottom layers. The stiffness matrices for each layer and the half-planes are first derived in the Fourier transform domain, then a set of global stiffness equations is assembled to solve for the transformed components of the elastic field. Since the singular part of the elastic field corresponding to the dislocation in the full-plane has been extracted from the transformed components, regular numerical integration is needed only to evaluate the inverse Fourier transform. Numerical results for the elastic field due to an edge dislocation in a bimaterial medium are shown in fairly good agreement with analytical solutions. The elastic field and the Peach–Kohler image force are also presented for an edge dislocation in a single layered half-plane, a two-layered half-plane and a multilayered composite made of alternating layers of two different materials.  相似文献   

16.
17.
The elastic analysis of a pressurized functionally graded material (FGM) annulus or tube is made in this paper. Different from existing studies, this study deals with an axisymmetrical FGM hollow cylinder or disk with arbitrarily varying material properties. A simple and efficient approach is suggested, which reduces the associated problem to solving a Fredholm integral equation. The resulting equation is approximately solved by expanding the solution as series of Legendre polynomials. The stresses and displacements can be represented in terms of the solution to the equation. For radius-dependent Young’s modulus, numerical results of the distribution of the radial and circumferential stresses are presented graphically. Our results indicate that change in the gradient of the FGM tube does not produce a substantial variation of the radial stress, but strongly affects the distribution of the hoop stress. In particular, the hoop stress may reach its maximum at an internal position or at the outer surface when the tube is internally pressurized. The results obtained are helpful in designing FGM cylindrical vessels to prevent failure.   相似文献   

18.
The problem on the equilibrium of an inhomogeneous anisotropic elastic layer is considered. The classical statement of the problem in displacements consists of three partial differential equations with variable coefficients for the three displacements and of three boundary conditions posed at each point of the boundary surface. Sometimes, instead of the statement in displacements, it is convenient to use the classical statement of the problem in stresses [1] or the new statement of the problem in stresses proposed by B. E. Pobedrya [2]. In the case of the problem in stresses, it is necessary to find six components of the stress tensor, which are functions of three coordinates. The choice of the statement of the problem depends on the researcher and, of course, on the specific problem. The fact that there are several statements of the problem makes for a wider choice of the method for solving the problem. In the present paper, for a layer with plane boundary surfaces, we propose a new statement of the problem, which, in contrast to the other two statements indicated above, can be called a mixed statement. The problem for a layer in the new statement consists of a system of three partial differential equations for the three components of the displacement vector of the midplane points. The system is coupled with three integro-differential equations for the three longitudinal components of the stress tensor. Thus, in the new statement, just as in the other statements in stresses, one should find six functions. In the new statement, three of these functions (the displacements of the midplane points) are functions of two coordinates, and the other three functions (the longitudinal components of the stress tensor) are functions of three coordinates. It is shown that all equations in the new statement are the Euler equations for the Reissner functional with additional constraints. After the problem is solved in the new statement, three components of the displacement vector and three transverse components of the stress tensor are determined at each point of the layer. The new statement of the problem can be used to construct various engineering theories of plates made of composite materials.  相似文献   

19.
多孔饱和半空间上弹性圆板垂直振动的积分方程   总被引:5,自引:0,他引:5  
金波 《力学学报》2000,32(1):78-86
应用新的方法求解多孔饱和固体的动力基本方程-Biot波动方程,首先把Biot波动方程化为仅有土骨架位移和孔隙水压力的偏微分方程组,并且逐次解耦方法(不引入位移势函数)求解此偏微分方程组,然后按混合边值条件建立多孔饱和半空间上弹性圆板垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程。文中考虑两种孔隙流体的表面边界条件:(a)半空间表面(包括圆板与半空间的接触面)是  相似文献   

20.
夹层FGM圆柱壳在扭转载荷作用下的弹性稳定性   总被引:1,自引:0,他引:1  
李世荣  王爽 《力学学报》2010,42(6):1172-1179
采用半解析方法研究了两端简支的功能梯度夹层圆柱壳在端部扭转载荷作用下的弹性稳定性.考虑圆柱壳的里外表层为均匀材料,中间层为材料性质沿厚度方向连续变化的功能梯度材料,并且在界面处的材料性质保持连续. 基于Flügge薄壳理论,建立了位移形式的结构静态屈曲控制方程.根据边界条件将位移表示为三角级数形式,获得包含柱壳端部扭转载荷参数的近似线性代数特征值问题,并通过数值方法求得了表征结构失稳特征的临界载荷. 数值结果表明,临界载荷随着半径与厚度比的增加而减小,随着功能梯度中间层的弹性模量的平均值的增加而增加.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号