首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a multiwavelength fiber Raman laser based on a highly birefringent photonic crystal fiber loop mirror is presented. A laser resonator is formed when the Raman amplification with cooperative Rayleigh scattering in a dispersion-compensating fiber is used as a distributed mirror and combined with a photonic crystal fiber loop mirror filtering structure. Stable multiwavelength lasing at room temperature is achieved due to the low temperature sensitivity of the highly birefringent photonic crystal fiber.  相似文献   

2.
A new type of resonator cells (photon traps) has been worked out, which ensures the Raman opalescence regime (i.e., the conditions under which the relative Raman scattering intensity at the outlet of the cells increases significantly as compared to the exciting line intensity. The Raman scattering spectra of a number of organic and inorganic compounds placed in photon traps are studied under pulse-periodic excitation by a copper-vapor laser.  相似文献   

3.
LiIO3晶体的受激拉曼散射   总被引:1,自引:0,他引:1  
 采用腔外单次通过方式,测量了LiIO3晶体在532 nm皮秒脉冲下的受激拉曼散射。实验中观察到3级斯托克斯线(556.07,582.30, 611.76 nm)和1级反斯托克斯线(509.57 nm),由此可计算出其频率间隔为820 cm-1。测量了LiIO3晶体各级拉曼散射谱线的阈值和增益系数,受激拉曼散射的整体转换效率达到56%。基于LiIO3晶体实现了皮秒外腔式拉曼激光器的运转,双波长输出总转换效率为27%,最大输出能量1.4 mJ。  相似文献   

4.
We demonstrate a multiple-wavelength Brillouin comb laser with cooperative Rayleigh scattering that uses Raman amplification in dispersion-compensating fiber. The laser resonator is a linear cavity formed by reflector at each end of the dispersion-compensating fiber to improve the reflectivity of the Brillouin Stokes comb. Multiple Brillouin Stokes generation has been improved in terms of optical signal-to-noise ratio and power-level fluctuation between neighboring channels. Furthermore, the linewidth of the Brillouin Stokes is uniform within the laser output bandwidth.  相似文献   

5.
532 nm激光泵浦硝酸钡晶体产生外腔拉曼激光   总被引:2,自引:0,他引:2       下载免费PDF全文
 由于硝酸钡晶体具有很强的对称振动(频率1 047 cm-1)和较高的拉曼增益,可以用来产生受激拉曼激光。采用单端泵浦的外置拉曼振荡腔与双棱镜分光装置进行了硝酸钡晶体拉曼激光实验,泵浦源为倍频Nd: YAG的532 nm激光,硝酸钡晶体通过水溶液降温法生长,尺寸为10 mm×10 mm×48 mm,采用特殊镀膜的腔镜对各阶斯托克斯光进行优化选择。在泵浦源达到65 mJ时,获得21 mJ一阶斯托克斯光,输出波长为563 nm,以及16 mJ的二阶斯托克斯光,输出波长为599 nm,受激拉曼散射SRS最大的整体转换效率(包含一阶、二阶斯托克斯光之和)为56.3%。  相似文献   

6.
Ahmad Hambali  N. A. M.  Al-Mansoori  M. H.  Ajiya  M.  Bakar  A. A. A.  Hitam  S.  Mahdi  M. A. 《Laser Physics》2011,21(9):1656-1660
We experimentally demonstrate a multi-wave length Brillouin-Raman fiber laser configured in a ring-cavity resonator. Interactions between stimulated Brillouin scattering and Raman amplification in a dispersion compensating fiber, attributed to the generation of 16 output channels at injected Raman pump unit power of 650 mW and Brillouin pump power of 2.0 mW. The first output channel has a peak power of 14.8 mW. By discriminating the even-order Brillouin Stokes signals from circulating in the resonator, the generated output channels were found to have wavelength spacing of ∼22 GHz. The output channels were also found to have average optical signal-to-noise ratio value of 11.7 dB.  相似文献   

7.
用于光纤拉曼放大器抽运源的单级光纤拉曼激光器   总被引:5,自引:0,他引:5  
张敏明  刘德明  王英  黄德修 《光学学报》2005,25(12):634-1638
抽运光源是光纤拉曼放大器应用于密集波分复用系统的关键技术,设计了一种紧凑型的808nm激光二极管抽运的基于钒酸钇(Nd^3+:YVO4)晶体1342nm固体激光器模块,提出利用上述1342nm固体激光器抽运基于光纤光栅的单级全光纤型拉曼谐振器获得1.4μm激光输出的光纤拉曼激光器,分析了固体激光器的阈值特性、性能优化方法和单级光纤拉曼谐振器的设计方法。上述1342nm固体激光器模块在抽运功率2W时获得了最大655mW的激光输出功率和42.6%的斜率效率,单级拉曼谐振器的1342nm到1.4μm光功率转换斜率效率达75%,在1425nm、1438nm、1455nm和1490nm处的输出功率达到300mW以上。最后给出基于1.4μm光纤拉曼激光器抽运的宽带平坦放大的光纤拉曼放大器的结构参量和性能测试结果。  相似文献   

8.
We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain medium are assumed to be of Gaussian spatial distributions. These rate equations are normalized by introducing some synthetic parameters and solved numerically, and a group of general curves are generated. Prom these curves we can understand the dependence of the Raman laser pulse characteristics on the parameters about the pumping, the gain medium, the Raman medium and the resonator. An illustrative calculation for a passively Q-switched Nd^3+:GdVO4 self-Raman laser is presented to demonstrate the usage of the curves and related formulas.[第一段]  相似文献   

9.
The electron phase space evolution in a non-relativistic and homogeneous laser plasma generated by a nanosecond laser in a near infrared region in the presence of stimulated Raman scattering is investigated by a numerical simulation. The mechanism of electron acceleration in the potential wells of the plasma wave accompanying the Raman back-scattering is analyzed in a 1D Vlasov-Maxwell model. The dominant wave modes are both the backward and the forward propagating Raman waves, each accompanied by a daughter electrostatic wave. In addition to a strong interaction of plasma electrons with the primary electrostatic wave in the case of back-scattering, a cascading is observed consisting in a secondary scattering of the primary Raman back-scattered wave. This phenomenon reduces the Raman reflectivity and causes an acceleration of electrons against the direction of the heating laser beam. Moreover, the strong trapping in the primary electrostatic wave generated by the Raman back-scattering leads due to the trapped particle instability to a significant spectral broadening of the original plasma wave and a subsequent intermittent behaviour of the scattering process. The high phase velocity electrostatic daughter wave of the forward Raman scattering cannot trap the electrons directly, but there is an indication of non-resonant quasi-modes combined of this wave and of the simultaneously existing electrostatic daughter wave accompanying the Raman back-scattering. The transform method is used for a solution of the set of partial differential equations, which consists of the Vlasov equation and of the full set of Maxwell equations in a 1D approximation. A simplified Fokker-Planck collision term is added to overcome the numerical instabilities during the simulation. The model has relevance to a long scale plasma geometry, such as occurring in the indirect drive experiments near the light entrance holes of target hohlraum.  相似文献   

10.
We introduce the concept of cascaded resonant Raman pumping of fibre lasers. The pump scheme utilises the relatively large intracavity Stokes field that is generated within a Raman fibre laser to excite a lanthanide ion that is doped within the core of the fibre providing the Raman gain. In order to illustrate the general characteristics of the pump method and, to establish the design parameters necessary for the realisation of the pump scheme, calculations from a theoretical model that is used to simulate the generation of laser output from a fibre laser that is resonantly pumped with first Stokes radiation is presented. Specifically, the 2.1 μm output from a Ho3+-doped silica fibre laser that is pumped with 1.15 μm first Stokes radiation is calculated with the use of a relatively simple numerical model. For a launched pump power of 20 W at 1.07 μm, a fibre laser output of 3 W is predicted for a nominal intrinsic loss of 1.5 dB/km at 2.1 μm, however, this low value of the intrinsic loss at 2.1 μm can be significantly relaxed when the length of the Ho3+-doped silica fibre laser resonator is made considerably shorter than the Stokes resonator.  相似文献   

11.
A multi-wavelength microsphere laser system, using a chirped fibre Bragg grating and a microsphere resonator as wavelength-selective elements and a high dopant erbium doped fibre as the gain material, has been successfully demonstrated. The multi-wavelength generation of the laser system arises from both the microsphere whispering gallery mode selection and from the additional Raman scattering inside the microsphere cavity when the erbium laser is operating at resonance with the whispering gallery modes. Through an appropriate design and fabrication of a microsphere and of a fibre taper, a selective multi-wavelength fibre laser has been realized when the pump power is above threshold required. The laser output lines created have shown much narrower linewidths than those from conventional fibre lasers and these characteristics are particularly suitable for the range of sensor applications envisaged in the work.  相似文献   

12.
Results from studying the interaction between gas bubbles and the field of a flow-through acoustic resonator, and the Raman scattering of acoustic waves by moving bubbles, are presented. The structure of the distribution of bubble concentration in the resonator is studied. It is shown that nonlinear scattering by moving bubbles can be used to image bubble objects.  相似文献   

13.
The parameter identifiers and synchronization controllers are designed based on stability theory in order to realize the synchronization of two chaotic systems with diverse structures and the parameter identification of the uncertain system. The stimulated Raman scattering and NH3 laser are taken as examples. The simulation results show that the global synchronization between the uncertain stimulated Raman scattering and the NH3 laser can be achieved, and all the parameters in the stimulated Raman scattering system can be identified simultaneously. The method is proved effective and feasible.  相似文献   

14.
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).  相似文献   

15.
The threshold power of Iaser-induced thermal scattering in a high-Q spherical silica microcavity is investigated theoretically as a function of diffraction parameter and the laser pump wavelength for twomode coupling. The threshold power is found to be comparable in order of magnitude with the threshold of Raman lasing and thermal instability in spherical silica microcavities and amounts to 100 fuW for a resonator with a radius of 35 fu m at a pump wavelength of 0.840 fu m. This ensures the application of microcavities as high-sensitive tools for measuring temperature, thermal conductivity, and heat capacity and as stabilizers for microlasers.  相似文献   

16.
The surface enhanced Raman scattering (SERS) has been measured of pyridine adsorbed on silver or copper with various surface roughness. The surface has been controlled by electron microscopy. In addition the incident laser wavelength has been varied. By taking into account the dielectric constants of silver and copper the maximum enhancement factors for an average roughness of 1000 Å and 500 Å for silver and copper, respectively, could be quantitatively accounted for by the antenna resonator model.  相似文献   

17.
根据2μm掺铥光纤激光泵浦中红外硫化玻璃光纤拉曼激光器的模型,采用非线性耦合方程组对激光器的性能进行了研究与分析。同时,对激光器各参数包括光纤长度、输出耦合器反射率、光纤散射损耗对激光器性能的影响进行了分析并给出了优化结果。数值仿真结果表明,在一定条件下,2μm泵浦硫化玻璃光纤产生拉曼激光的斜率效率可以超过85%。另外,光纤长度和输出耦合器反射率不仅对输出激光功率的影响很大,而且是相互影响的,必须同时进行优化。结果也表明,输出激光的功率随光纤散射损耗增加急剧线性下降。以上的结果可以用于硫化玻璃光纤级联拉曼激光器的实验指导和优化设计。  相似文献   

18.
The radiation transfer equations of the extracavity Raman laser including up to the third Stokes beams and backward Raman scattering terms were deduced in detail from the wave equation and material equations of stimulated Raman scattering. The radiation transfer equations were solved numerically to optimize the performance of the extracavity Raman lasers with barium nitrate crystal as the nonlinear medium. The optimum reflectivity of the output coupler at the first Stokes was figured out numerically to achieve the maximum conversion efficiency of the first Stokes, and found to be closely related to the pump pulse duration, peak intensity of the pump pulse, and Raman crystal length. With the resonator mirrors highly reflective at the first Stokes, the highest conversion efficiency of the second Stokes was obtained when the input mirror was highly reflective at second Stokes, whereas the output coupler was highly transmissive at the second Stokes. It was found that too high intracavity intensity of the second Stokes would impede the efficient energy extraction from the pump pulse to the first Stokes, and consequently, limit the conversion efficiency of the second Stokes.  相似文献   

19.
The properties of the spin-flip Raman laser (SFR laser) which depend on stimulated Raman scattering from mobile conduction electrons in InSb under an external magnetic field are presented. The essential parameters are derived from a macroscopic treatment of the stimulated Raman effect and the microscopic theory of the scattering cross-section, and are compared with experimental results. Output pulse powers as large as 1 kW have been measured for 10.6 and 5.3 μm excitation radiation and continuous powers of 1 W for continuous excitation with a 5.3 μm pump source. The SFR laser offers some interesting applications in physics and chemistry, since its frequency is proportional to the applied magnetic field and its linewidth can be made smaller than 1 kHz.  相似文献   

20.
We present the results of a solid self-Raman laser based on a Nd:KGW crystal that is transversely pumped by laser diode bars. A beam of an eye-safe laser with a 31.8 mJ output energy and a 2.0 ns pulse width was obtained by applying a special s-polarized reflective resonator configuration in which the length of the Raman resonator was shorter than that of the fundamental radiation resonator. The eye-safe laser has the highest output energy and the shortest pulse width among the Nd:KGW lasers ever reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号