首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.

Background

Recent progress in discernment of molecular pathways of taste transduction underscores the need for comprehensive phenotypic information for the understanding of the influence of genetic factors in taste. To obtain information that can be used as a base line for assessment of effects of genetic manipulations in mice taste, we have recorded the whole-nerve integrated responses to a wide array of taste stimuli in the chorda tympani (CT) and glossopharyngeal (NG) nerves, the two major taste nerves from the tongue.

Results

In C57BL/6J mice the responses in the two nerves were not the same. In general sweeteners gave larger responses in the CT than in the NG, while responses to bitter taste in the NG were larger. Thus the CT responses to cyanosuosan, fructose, NC00174, D-phenylalanline and sucrose at all concentrations were significantly larger than in the NG, whereas for acesulfame-K, L-proline, saccharin and SC45647 the differences were not significant. Among bitter compounds amiloride, atropine, cycloheximide, denatonium benzoate, L-phenylalanine, 6-n-propyl-2-thiouracil (PROP) and tetraethyl ammonium chloride (TEA) gave larger responses in the NG, while the responses to brucine, chloroquine, quinacrine, quinine hydrochloride (QHCl), sparteine and strychnine, known to be very bitter to humans, were not significantly larger in the NG than in the CT.

Conclusion

These data provide a comprehensive survey and comparison of the taste sensitivity of the normal C57BL/6J mouse against which the effects of manipulations of its gustatory system can be better assessed.
  相似文献   

2.

Background  

In rodents, dietary Na+ deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na+ stimulation. However, in the rat taste bud cells Na+ deprivation increases the number of amiloride sensitive epithelial Na+ channels (ENaC), which are considered as the "receptor" of the Na+ component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ) in taste buds were observed from rats fed with diets containing either 0.03% (Na+ deprivation) or 1% (control) NaCl for 15 days, by using in situ hybridization and real-time quantitative RT-PCR (qRT-PCR). Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na+ deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined.  相似文献   

3.

Background

Low-intensity pulsed ultrasound stimulation (LIPUS) has been proven to be a noninvasive method with high spatial resolution and deep penetration. Previous studies have qualitatively demonstrated that the electromyographic response caused by LIPUS in the mouse motor cortex is affected by the anesthetic state of the mice. However, the quantitative relationship between motor response and anesthetic dose remains unclear.

Results

Experimental results show that the success rate decreases stepwise as the isoflurane concentration/mouse weight ratio increases (ratios: [0.004%/g, 0.01%/g], success rate: ~?90%; [0.012%/g, 0.014%/g], ~?40%; [0.016%/g, 0.018%/g], ~?7%; 0.024%/g, 0). The latency and duration of EMG increase significantly when the ratio is more than 0.016%/g. Compared with that at ratios from 0.004 to 0.016%/g, normalized EMG amplitude decreases significantly at ratios of 0.018%/g and 0.020%/g.

Conclusions

Quantitative calculations indicate that the anesthetic dose has a significant regulatory effect on the motor response of mice during LIPUS. Our results have guiding significance for the selection of the anesthetic dose for LIPUS in mouse motor cortex experiments.
  相似文献   

4.

Background

We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs) to neural precursors and neurons.HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII).

Results

A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons.

Conclusion

This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.
  相似文献   

5.

Background

Previous work suggested that macrophage migration inhibitory factor (MIF) may be involved in bladder inflammation. Therefore, the location of MIF was determined immunohistochemically in the bladder, prostate, major pelvic ganglia, sympathetic chain, the L6-S1 dorsal root ganglia (DRG) and the lumbosacral spinal cord of the rat.

Results

In the pelvic organs, MIF immunostaining was prominent in the epithelia. MIF was widely present in neurons in the MPG and the sympathetic chain. Some of those neurons also co-localized tyrosine hydroxylase (TH). In the DRGs, some of the neurons that stained for MIF also stained for Substance P. In the lumbosacral spinal cord, MIF immunostaining was observed in the white mater, the dorsal horn, the intermediolateral region and in the area around the central canal. Many cells were intensely stained for MIF and glial fibrillary acidic protein (GFAP) suggesting they were glial cells. However, some cells in the lumbosacral dorsal horn were MIF positive, GFAP negative cells suggestive of neurons.

Conclusions

Therefore, MIF, a pro-inflammatory cytokine, is localized to pelvic organs and also in neurons of the peripheral and central nervous tissues that innervate those organs. Changes in MIF's expression at the end organ and at peripheral and central nervous system sites suggest that MIF is involved in pelvic viscera inflammation and may act at several levels to promote inflammatory changes.
  相似文献   

6.

Background

While it is well known that bradykinin B2 agonists increase plasma protein extravasation (PPE) in brain tumors, the bradykinin B1 agonists tested thus far are unable to produce this effect. Here we examine the effect of the selective B1 agonist bradykinin (BK) Sar-[D-Phe8]des-Arg9BK (SAR), a compound resistant to enzymatic degradation with prolonged activity on PPE in the blood circulation in the C6 rat glioma model.

Results

SAR administration significantly enhanced PPE in C6 rat brain glioma compared to saline or BK (p < 0.01). Pre-administration of the bradykinin B1 antagonist [Leu8]-des-Arg (100 nmol/Kg) blocked the SAR-induced PPE in the tumor area.

Conclusions

Our data suggest that the B1 receptor modulates PPE in the blood tumor barrier of C6 glioma. A possible role for the use of SAR in the chemotherapy of gliomas deserves further study.
  相似文献   

7.

Background

The morphological development of neurons is a very complex process involving both genetic and environmental components. Mathematical modelling and numerical simulation are valuable tools in helping us unravel particular aspects of how individual neurons grow their characteristic morphologies and eventually form appropriate networks with each other.

Methods

A variety of mathematical models that consider (1) neurite initiation (2) neurite elongation (3) axon pathfinding, and (4) neurite branching and dendritic shape formation are reviewed. The different mathematical techniques employed are also described.

Results

Some comparison of modelling results with experimental data is made. A critique of different modelling techniques is given, leading to a proposal for a unified modelling environment for models of neuronal development.

Conclusion

A unified mathematical and numerical simulation framework should lead to an expansion of work on models of neuronal development, as has occurred with compartmental models of neuronal electrical activity.
  相似文献   

8.

Purpose

To examine the effect of visual target blurring on accommodation.

Methods

We evaluated the objective refraction values when the visual target (asterisk; 8°) was changed from the state without Gaussian blur (15 s) to the state with Gaussian blur adapted [0(without blur)?→?10, 0?→?50, 0?→?100: 15 s each].

Results

In Gaussian blur 10, when blurring of the target occurred, refraction value did not change significantly. In Gaussian blur 50 and 100, when blurring of the target occurred, the refraction value became significantly myopic.

Conclusion

Blurring of the distant visual target results in intervention of accommodation.
  相似文献   

9.

Background

Neurological disorders suggest that the excitotoxicity involves a drastic increase in intracellular Ca2+ concentrations and the formation of reactive oxygen species. The presence of these free radicals may also affect the dopaminergic system. The aim of this work was to determine if riboflavin (B2) and pyridoxine (B6) provide protection to the brain against free radicals generated by 3-nitropropionic acid (3-NPA) by measuring the levels of dopamine (DA) and selected oxidative stress markers.

Methods

Male Fisher rats were grouped (n?=?6) and treated as follows: group 1, control (NaCl 0.9%); group 2, 3-NPA (20 mg/kg); group 3, B2 (10 mg/kg); group 4, B2 (10 mg/kg)?+?3-NPA (20 mg/kg); group 5, B6 (10 mg/kg) and group 6, B6?+?3-NPA. All treatments were administered every 24 h for 5 days by intraperitoneal route. After sacrifice, the brain was obtained to measure DA, GSH, and lipid peroxidation, Ca2+, Mg2+, ATPase and H2O2.

Main findings

Levels of dopamine increased in cortex, striatum and cerebellum/medulla oblongata of animals that received 3-NPA alone. The lipid peroxidation increased in cortex, striatum, and cerebellum/medulla oblongata, of animals treated with B2 vitamin alone. ATPase dependent on Ca+2, Mg+2 and H2O2 increased in all regions of animals that received 3-NPA alone.

Conclusion

The results confirm the capacity of 3-NPA to generate oxidative stress. Besides, the study suggests that B2 or B6 vitamins restored the levels of DA and reduced oxidative stress in brain of rats. We believe that these results would help in the study of neurodegenerative diseases.
  相似文献   

10.

Purpose

To evaluate the relationship between corneal and ocular higher order wavefront aberrations (HOAs) and age in young subjects aged 20 years or less.

Methods

Corneal and ocular HOAs of the right eyes of 87 normal subjects were measured using videokeratography and the Hartmann–Shack wavefront aberrometer (KR-9000PW; Topcon Corp., Tokyo, Japan). The HOAs were calculated using Zernike polynomials up to the sixth order. From the Zernike coefficients, the root mean squares (RMS) of coma and spherical aberration were calculated.

Results

Corneal spherical-like aberrations significantly correlated with age (r = 0.420, p < 0.001); however, coma-like aberrations and total HOAs did not significantly correlate with age. None of the ocular HOAs significantly correlated with age. In addition, a gender-wise comparison of the collected data showed that corneal and ocular HOAs did not significantly correlate with age.

Conclusion

In children, the corneal and ocular total HOAs did not vary with age. Compared to the previous reports in adults, we found fewer corneal and ocular HOAs in children.
  相似文献   

11.
12.

Background

Carbenoxolone (CBX), a gap junction uncoupler, alters the functioning of the pre-Bötzinger Complex (preBötC), a central pattern generating neuronal network important for the production of respiratory rhythm in mammals. Even when isolated in a 1/2 mm-thick slice of medulla oblongata from neonatal mouse the preBötC continues producing periodic bursts of action potentials, termed population bursts that are thought to be important in generating various patterns of inspiration, in vivo. Whether gap junction communication contributes to preBötC rhythmogenesis remains unresolved, largely because existing gap junction uncouplers exert numerous non-specific effects (e.g., inhibition of active transport, alteration of membrane conductances). Here, we determined whether CBX alters preBötC rhythmogenesis by altering membrane properties including input resistance (Rin), voltage-gated Na+ current (INa), and/or voltage-gated K+ current (IK), rather than by blocking gap junction communication. To do so we used a medullary slice preparation, network-level recordings, whole-cell voltage clamp, and glycyrrhizic acid (GZA; a substance used as a control for CBX, since it is similar in structure and does not block gap junctions).

Results

Whereas neither of the control treatments [artificial cerebrospinal fluid (aCSF) or GZA (50 μM)] noticeably affected preBötC rhythmogenesis, CBX (50 μM) decreased the frequency, area and amplitude of population bursts, eventually terminating population burst production after 45–60 min. Both CBX and GZA decreased neuronal Rin and induced an outward holding current. Although neither agent altered the steady state component of IK evoked by depolarizing voltage steps, CBX, but not GZA, increased peak INa.

Conclusion

The data presented herein are consistent with the notion that gap junction communication is important for preBötC rhythmogenesis. By comparing the effects of CBX and GZA on membrane properties our data a) demonstrate that depression of preBötC rhythmogenesis by CBX results from actions on another variable or other variables; and b) show that this comparative approach can be used to evaluate the potential contribution of other non-specific actions (e.g., Ca++ conductances or active transport) of CBX, or other uncouplers, in their alteration of preBötC rhythmogenesis, or the functioning of other networks.
  相似文献   

13.

Background

Excitotoxic neuronal injury by action of the glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype have been implicated in the pathogenesis of brain damage as a consequence of bacterial meningitis. The most potent and selective blocker of NMDA receptors containing the NR2B subunit is (R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol (RO 25-6981). Here we evaluated the effect of RO 25-6981 on hippocampal neuronal apoptosis in an infant rat model of meningitis due to Streptococcus pneumoniae. Animals were randomized for treatment with RO 25-6981 at a dosage of either 0.375 mg (15 mg/kg; n = 28) or 3.75 mg (150 mg/kg; n = 15) every 3 h or an equal volume of sterile saline (250 μl; n = 40) starting at 12 h after infection. Eighteen hours after infection, animals were assessed clinically and seizures were observed for a period of 2 h. At 24 h after infection animals were sacrificed and brains were examined for apoptotic injury to the dentate granule cell layer of the hippocampus.

Results

Treatment with RO 25-6981 had no effect on clinical scores, but the incidence of seizures was reduced (P < 0.05 for all RO 25-6981 treated animals combined). The extent of apoptosis was not affected by low or high doses of RO 25-6981. Number of apoptotic cells (median [range]) was 12.76 [3.16–25.3] in animals treated with low dose RO 25-6981 (control animals 13.8 [2.60–31.8]; (P = NS) and 9.8 [1.7–27.3] (controls: 10.5 [2.4–21.75]) in animals treated with high dose RO 25-6981 (P = NS).

Conclusions

Treatment with a highly selective blocker of NMDA receptors containing the NR2B subunit failed to protect hippocampal neurons from injury in this model of pneumococcal meningitis, while it had some beneficial effect on the incidence of seizures.
  相似文献   

14.

Purpose

We investigated the relationship between central and peripheral corneal astigmatism in elderly patients.

Methods

Seventy-six eyes of 76 elderly subjects (mean age?=?72.6?±?3.0 years) were included in the study. Corneal shape was evaluated using the Pentacam HR (Oculus, Wetzlark, Germany), which is comprised of a rotating Scheimpflug camera and a short-wavelength slit light. The power distribution map was selected and corneal astigmatism was calculated using front K-Readings in zones centered on the pupil. Analyzed zones were 2.0–6.0 mm in diameter.

Results

Corneal astigmatism decreased as diameter increased, similar to what was observed in eyes with with-the-rule astigmatism and against-the-rule astigmatism (ANOVA, p?<?0.01). This effect was more pronounced in eyes with a large central corneal astigmatism (Spearman’s rank-correlation coefficient test, r?=?0.51, p?<?0.01). There was no change as to axis of corneal astigmatism (ANOVA, p?=?0.98).

Conclusion

These results suggest that the relationship between central and peripheral corneal astigmatism should be taken into consideration to optimize vision when astigmatic correction is needed.
  相似文献   

15.
16.

Background

Global cerebral ischemia triggers neurodegeneration in the hippocampal CA1 region, but the mechanism of neuronal death remains elusive. The epsilon isoform of protein kinase C (PKCε) has recently been identified as a master switch that controls the nucleocytoplasmic trafficking of ATF2 and the survival of melanoma cells. It is of interest to assess the role of PKCε–ATF2 signaling in neurodegeneration.

Results

Phosphorylation of ATF2 at Thr-52 was reduced in the hippocampus of PKCε null mice, suggesting that ATF2 is a phosphorylation substrate of PKCε. PKCε protein concentrations were significantly reduced 4, 24, 48 and 72 h after transient global cerebral ischemia, resulting in translocation of nuclear ATF2 to the mitochondria. Degenerating neurons staining positively with Fluoro-Jade C exhibited cytoplasmic ATF2.

Conclusions

Our results support the hypothesis that PKCε regulates phosphorylation and nuclear sequestration of ATF2 in hippocampal neurons during ischemia-induced neurodegeneration.
  相似文献   

17.
18.

Background

The present study used event-related brain potentials to investigate semantic, phonological and syntactic processes in adult German dyslexic and normal readers in a word reading task. Pairs of German words were presented one word at a time. Subjects had to perform a semantic judgment task (house – window; are they semantically related?), a rhyme judgment task (house – mouse; do they rhyme?) and a gender judgment task (das – Haus [the – house]; is the gender correct? [in German, house has a neutral gender: das Haus]).

Results

Normal readers responded faster compared to dyslexic readers in all three tasks. Onset latencies of the N400 component were delayed in dyslexic readers in the rhyme judgment and in the gender judgment task, but not in the semantic judgment task. N400 and the anterior negativity peak amplitudes did not differ between the two groups. However, the N400 persisted longer in the dyslexic group in the rhyme judgment and in the semantic judgment tasks.

Conclusion

These findings indicate that dyslexics are phonologically impaired (delayed N400 in the rhyme judgment task) but that they also have difficulties in other, non-phonological aspects of reading (longer response times, longer persistence of the N400). Specifically, semantic and syntactic integration seem to require more effort for dyslexic readers and take longer irrespective of the reading task that has to be performed.
  相似文献   

19.

Background

To determine whether early imitative responses fade out following the maturation of attentional mechanisms, the relationship between primitive imitation behaviors and the development of attention was examined in 4-month-old infants. They were divided into high and low imitators, based on an index of imitation. The status of attention was assessed by studying inhibition of return (IOR). Nine-month-old infants were also tested to confirm the hypothesis.

Results

The IOR latency data replicate previous results that infants get faster to produce a covert shift of attention with increasing age. However, those 4-month-olds who showed less imitation had more rapid saccades to the cue before target presentation.

Conclusion

The cortical control of saccade planning appears to be related to an apparent drop in early imitation. We interpret the results as suggesting a relationship between the status of imitation and the neural development of attention-related eye movement.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号