首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The complete graph conjecture that encodes the inner-core electrons of atoms with principal quantum number n >or= 2 with complete graphs, and especially with odd complete graphs, is discussed. This conjecture is used to derive new values for the molecular connectivity and pseudoconnectivity basis indices of hydrogen-suppressed chemical pseudographs. For atoms with n = 2 the new values derived with this conjecture are coincident with the old ones. The modeling ability of the new homogeneous basis indices, and of the higher-order terms, is tested and compared with previous modeling studies, which are centered on basis indices that are either based on quantum concepts or partially based on this new conjecture for the inner-core electrons. Two similar algorithms have been proposed with this conjecture, and they parallel the two "quantum" algorithms put forward by molecular connectivity for atoms with n > 2. Nine properties of five classes of compounds have been tested: the molecular polarizabilities of a class of organic compounds, the dipole moment, molar refraction, boiling points, ionization energies, and parachor of a series of halomethanes, the lattice enthalpy of metal halides, the rates of hydrogen abstraction of chlorofluorocarbons, and the pED(50) of phenylalkylamines. The two tested algorithms based on the odd complete graph conjecture give rise to a highly interesting model of the nine properties, and three of them can even be modeled by the same set of basis indices. Interesting is the role of some basis indices all along the model.  相似文献   

2.
3.
4.
5.
6.
7.
Encoding the core electrons with graph concepts   总被引:2,自引:0,他引:2  
The core electron problem of atoms in chemical graph studies has always been considered as a minor problem. Usually, chemical graphs had to encode just a small set of second row atoms, i.e., C, N, O, and F, thus, graph and, in some cases, pseudograph concepts were enough to "graph" encode the molecules at hand. Molecular connectivity theory, together with its side-branch the electrotopological state, introduced two "ad hoc" algorithms for the core electrons of higher-row atoms based, mainly, on quantum concepts alike. Recently, complete graphs, and, especially, odd complete graphs have been introduced to encode the core electrons of higher-row atoms. By the aid of these types of graphs a double-valued algorithm has been proposed for the valence delta, deltav, of any type of atoms of the periodic table with a principal quantum number n > or =2. The new algorithm is centered on an invariant suggested by the hand-shaking theorem, and the values it gives rise to parallel in some way the values derived by the aid of the two old "quantum" algorithms. A thorough comparative analysis of the newly proposed algorithms has been undertaken for atoms of the group 1A-7A of the periodic table. This comparative study includes the electronegativity, the size of the atoms, the first ionization energy, and the electron affinity. The given algorithm has also been tested with sequential complete graphs, while the even complete graphs give rise to conceptual difficulties. QSAR/QSPR studies do not show a clear-cut preference for any of the two values the algorithm gives rise to, even if recent results seem to prefer one of the two values.  相似文献   

8.
A new algorithm for the delta(v) number, the basic parameter of molecular connectivity indices, is proposed. The new algorithm, which is centered on graph concepts like complete graphs and general graphs, encodes the information of the bonded hydrogen on different atoms through a perturbation parameter that makes use of no new graph concepts. The model quality of the new algorithm is tested with 13 properties of seven different classes of compounds, as well as with composite classes of compounds with the same property and with composite properties of the same class of compounds. Chosen properties and classes of compounds display different percentage of bonded hydrogen atoms, which allow a checking of the importance of this parameter. A comparison is drawn with previous results with zero contribution for the hydrogen perturbation as well as among results obtained by changing the number of compounds of a property but keeping constant the percentage of hydrogen atoms. Results underline the importance of the property as well as the importance of the number of compounds in determining the level of the hydrogen perturbation. Molecular connectivity terms are in some cases more critical than the combination of indices in detecting the perturbation introduced by the hydrogen atoms.  相似文献   

9.
General and complete graphs have recently been used to free chemical graph theory, and especially molecular connectivity theory, from spurious concepts, which belonged to quantum chemistry with no direct counterpart in graph theory. Both types of graph concepts allow the encoding of multiple bonds, non-bonding electrons, and core electrons. Furthermore, they allow the encoding of the bonded hydrogen atoms, which are normally suppressed in chemical graphs. This suppression could sometimes have nasty consequences, like the impossibility to differentiate between compounds, whose hydrogen-suppressed chemical graphs are completely equivalent, like for the CH2F2 and BHF2 compounds. At the computational level the new graph concepts do not introduce any dramatic changes relatively to previous QSPR/QSAR studies. These concepts can nevertheless help in encoding the many electronic features of a molecule, achieving, as a bonus, an improved quality of the modeled properties, as it is here exemplified with a set of properties of different classes of compounds.  相似文献   

10.
Earlier attempts to assess the complexity of molecules are analyzed and summarized in a number of definitions of general and topological complexity. A concept which specifies topological complexity as overall connectivity, and generalizes the idea of molecular connectivities of Randic, Kier, and Hall, is presented. Two overall connectivity indices, TC and TC1, are defined as the connectivity (the sum of the vertex degrees) of all connected subgraphs in the molecular graph. The contributions to TC and TC1, which originate from all subgraphs having the same number of edges e, form two sets of eth-order overall connectivities, eTC and eTC1. The total number of subgraphs K is also analyzed as a complexity measure, and the vector of its eth-order components, eK, is examined as well. The TC, TC1, and K indices match very well the increase in molecular complexity with the increase in the number of atoms and, at a constant number of atoms, with the increased degree of branching and cyclicity of the molecular skeleton, as well as with the multiplicity of bonds and the presence of heteroatoms. The potential of the three sets of eth-order complexities for applications to QSPR was tested by the modeling of 10 alkane properties (boiling point, critical temperature, critical pressure, critical volume, molar volume, molecular refraction, heat of formation, heat of vaporization, heat of atomization, and surface tension), in parallel with Kier and Hall's molecular connectivity indices (k)chi. The topological complexity indices were shown to outperform molecular connectivity indices in 44 out of the 50 pairs of models compared, including all models with four and five parameters.  相似文献   

11.
12.
13.
14.
A new variable index, external factor variable connectivity index (EFVCI), is proposed, in which the atomic attribute is divided into two parts. The innate part is denoted as outer-shell electrons and external part or perturbation by other atoms is represented as summation, multiplied by a variable x, of squared reciprocal matrix of i row (corresponds to atom A(i)). The division of atomic attribute in EFVCI is interpreted by using topological structure. In the correlation of boiling point of 149 acyclic alkanes, the optimal values will approach to a constant at -0.29 by using the zero to higher order indices of the same series. The new index, with high regression quality (R = 0.9986, s = 2.26, and F = 7088.4), is compared favorably with variable connectivity index and molecular connectivity index.  相似文献   

15.
Recently, the concept of overall connectivity of a graph G, TC(G), was introduced as the sum of vertex degrees of all subgraphs of G. The approach of more detailed characterization of molecular topology by accounting for all substructures is extended here to the concept of overall distance OW(G) of a graph G, defined as the sum of distances in all subgraphs of G, as well as the sum of eth-order terms, (e)OW(G), with e being the number of edges in the subgraph. Analytical expressions are presented for OW(G) of several basic classes of graphs. The overall distance is analyzed as a measure of topological complexity in acyclic and cyclic structures. The potential usefulness of the components of this generalized Wiener index in QSPR/QSAR is evaluated by its correlation with a number of properties of C3-C8 alkanes and by a favorable comparison with models based on molecular connectivity indices.  相似文献   

16.
17.
18.
19.
李华  杨翌秋 《分析化学》1995,23(1):25-28
本文讨论了29个不对称色酸双偶氮膦酸型显色剂的分子联接性指数,并将其与结构选择性因子相结合,用于偶氮类剂结构与铈显色反应灵敏度的相关性研究,讨论了显色剂结构对显色反应灵敏度的影响。  相似文献   

20.
Novel atomic level AI topological indexes based on the adjacency matrix and distance matrix of a graph is used to code the structural environment of each atomic type in a molecule. These AI indexes, along with Xu index, are successfully extended to compounds with heteroatoms in terms of novel vertex degree v(m), which is derived from the valence connectivity delta(v) of Kier-Hall to resolve the differentiation of heteroatoms in molecular graphs. The multiple linear regression (MLR) is used to develop the structure-property/activity models based on the modified Xu and AI indices. The efficiency of these indices is verified by high quality QSPR/QSAR models obtained for several representative physical properties and biological activities of several data sets of alcohols with a wide range of non-hydrogen atoms. The results indicate that the physical properties studied are dominated by molecular size, but other atomic types or groups have small influences dependent on the studied properties. Among all atomic types, -OH groups seem to be most important due to hydrogen-bonding interactions. On the contrary, -OH groups play a dominant role in biological activities studied, although molecular size is also an important factor. These results indicate that both Xu and AI indices are useful model parameters for QSPR/QSAR analysis of complex compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号