首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
在Euler函数φ(n)的性质的基础上,利用整数分解的方法证明了对任意的正整数m,n,非线性方程φ(mn)=aφ(m)+bφ(n)+c~2(a,b,c为勾股数且gcd(a,b,c)=1)当(a,b,c)=(3,4,5),(5,12,13),(7,24,25)时无正整数解,并证明了当a,b为任意的一奇一偶,c为任意的奇数,且满足a~2+b~2=c~2,gcd(a,b)=1,2|b时,方程无正整数解.  相似文献   

2.
设(a,b,c)是一组满足a~2+b~2=c~2,gcd(a,b)=1,2|b的本原商高数,运用初等数论方法讨论方程(an)~x+(bn)~y=(cn)~z正整数解(x,y,z,n),证明了:当(a,b,c)=(143,24,145)时,方程仅有正整数解(x,y,z,n)=(2,2,2,m),其中m是任意正整数,上述结果说明此时Jesmanowicz猜想成立.  相似文献   

3.
设p是奇素数.对于非负整数r,设U_(2r+1)=(α~(2r+1)+β~(2r+1))/2~(1/2),V_(2r+1)=(α~(2r+1)-β~(2r+1))/6~(1/2),其中α=(1+3~(1/2))/2~(1/2),β=(1-3~(1/2))/2~(1/2).运用初等数论方法证明了:方程y~3=x~2+2p~4有适合gcd(x,y)=1的正整数解(x,y)的充要条件是p=U_(2m+1),其中m是正整数.当上述条件成立时,方程仅有正整数解(x,y)=(V(2m+1)(V_(2m+1)~2-6),V_(2m+1)~2+2)适合gcd(x,y)=1.由此可知:当p10000时,方程仅有正整数解(p,x,y)=(5,9,11),(19,1265,123),(71,68675,1683)和(3691,9677201305,4541163)适合gcd(x,y)=1.  相似文献   

4.
设a,b,c是适合a=2~(2r)-n~2,b=2~(r+1)n,c=2~(2r)+n~2的正整数,其中r是正整数,n是奇素数.运用初等数论方法讨论了指数Diophantine方程c~x+b~y=a~z.证明了:当2~r=n+1时,方程仅有正整数解(x,y,z)=(1,1,2);否则,方程无解。上述结果部分地证实了有关本原商高数的Miyazaki猜想。  相似文献   

5.
<正>二次函数是初中数学教学的一个重难点,我们先来回顾一下.对于二次函数f(x)=ax2+bx+c(a≠0),可以进行如下的变形:f(x)=a(x2+bx+c(a≠0),可以进行如下的变形:f(x)=a(x2+b/ax+c/a).根据公式(x+m)2+b/ax+c/a).根据公式(x+m)2=x2=x2+2mx+m2+2mx+m2,f(x)可以配方得顶点式方程:f(x)=a(x-m)2,f(x)可以配方得顶点式方程:f(x)=a(x-m)2+n(其中m、n是与x无关的常数).从上式中得到f(x)的对称轴方程为x=m(m=-b/2a),这也可以表达为:对于任意的x总有f(m  相似文献   

6.
一组正整数(a,b,c)称为本原商高数,如果它们满足方程a~2+b~2=c~2且(a,b)=1,2|b.著名的Jesmanowicz-Terai猜想是指当(a,b,c)是本原商高数时,方程a~x+b~y=c~z仅有正整数解(x,y,z)=(2,2,2).本文讨论了商高数的位移形式,即就是:设u是大于2的偶数,本文运用初等数论方法以及同余的性质讨论了指数Diophantine方程(u~2+1)~x+(2u)~y=(u~2-1)~z的可解性,证明了该方程无正整数解(x,y,z).从而部分的解决了Jesmanowicz-Terai猜想的另一种形式.  相似文献   

7.
运用初等方法讨论有关奇完全数的两个猜想.证明了:(i)如果n=p~αq_1~(2β_1)q_2~(2β_2)…q_s~(2β_s)是奇完全数,其中P,q_1,q_2,…,q_s是不同的奇素数,α,β_1,β_2,…,β_s是正整数,p≡α≡1(mood4),而且q_i≡-1(mod m)(i=1,2,…,s),m是大于2的正整数,则.1/2σ(p~α)必为合数;(ii)如果n=a~2~x+b~2~x,其中a,b,x是适合ab,gcd(a,6)=1,2|ab的正整数,则当x≥log_2log_2log_2 a时,n不是奇完全数.  相似文献   

8.
设n,a,b,c是正整数,gcd(a,b,c)=1,a,b≥3,且丢番图方程a~x+b~y=c~z只有正整数解(x,y,z)=(1,1,1).证明了若(x,y,z)是丢番图方程(an)~x+(bn)~y=(cn)~z的正整数解且(x,y,z)≠(1,1,1),则yzz或xzy.还证明了当(a,b,c)=(3,5,8),(5,8,13),(8,13,21),(13,21,34)时,丢番图方程(an)~x+(bn)~y=(cn)~z只有正整数解(x,y,z)=(1,1,1).  相似文献   

9.
设n是正整数,(a,b,c)是本原商高数.1956年,L.Jesmanowicz曾经预测:方程(ab)x+(bn)y=(cn)z仅有正整数解(a,b,c)=(2,2,2),这是一个迄今远未解决的数论问题.对于正整数t,设P(t)是t的不同素因数的乘积.运用Baker方法证明了;当n>1,(a,b,c)=(f2-4,4f,f2+4),其中f是适合f>348的奇数时,如果P(n)■a,则Jesmanowicz猜想成立.  相似文献   

10.
设m,a,c均是大于1的正整数.当am≡1(mod 4)或am≡3(mod 8),3■m或2■a,2|m,3■m时,得到了丢番图方程(m2+1)x+(cm2-1)y=(am)z,1+c=a2,m≥2只有正整数解(x,y,z)=(1,1,2).特别地,当a≡1,3,5 (mod 8),a≠3或a≡7 (mod 8),a≡2(mod 3)时,方程2x+(a2-2)y=(a)z只有正整数解(x,y,z)=(1,1,2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号