首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extract of Casimiroa edulis was investigated for antihypertensive activity. The ethanol and total alkaloids (in chloroform) extracts were found to have antihypertensive properties at doses of 500 and 200 mg/kg, respectively. Four quinolinone alkaloids were isolated and identified as: 2-(2′-hydroxy-4′-methoxyphenyl)-5,8-dimethoxy-3-propyl-1H-quinolin-4-one (1), 5,8-dimethoxy-2-(3′-methoxyphenyl)-3-propyl-1H-quinolin-4-one (2), 5,8-dimethoxy-2-(3′,4′-dimethoxyphenyl)-3-propyl-1H-quinolin-4-one (3), and 5,6-dimethoxy-2-(2′,5′,6′-trimethoxyphenyl)-1H-quinolin-4-one (4). Interestingly, compounds 1, 2, and 3 were found to be new alkaloids. The four isolated alkaloids showed antihypertensive activity at doses of 50, 100, 200, and 300 mg/kg, respectively. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 473–476, September–October, 2007.  相似文献   

2.
Series of new mixed aza-oxo-thia macrocyclic ligands {2,6,12,16-tetraaza-1,7,11,17-tetraoxo-9,19-dithia-[(4′-methyl-5′,4,3′)(14′-methyl-15′,14,13′)]ditriazine}cyclocosane (L 1 ); {2,6,13,17-teraaza-1,7,12,18-tetraoxo-9,10,20,21-tetrathia-[(4′-methyl-5′,4,3′)(15′-methyl-14′,16′,15)]di-triazine}cyclodocosane (L 2 ); {2,6,14,18-tetraaza-1,7,13,19-tetraoxo-10,22-dithia-[(4′-methyl-5′,3′,4)(16′-methyl-15′,17′,16)]ditriazine}cyclotetracosane (L 3 ) and {2,6,15,19-tetraaza-1,7,14,12-tetraoxo-10,11,23,24-tetrathia-[(4′-methyl-5′,4,3′)(17′-methyl-8′,17,16′)]ditriazine}cyclohexa-cosane (L 4 ) were synthesized. The structural features of the compounds have been studied by elemental analyses, Mass, FT-Raman, FT-IR, 1H and 13C NMR spectroscopy. The antimicrobial activities of the ligands were evaluated using disk diffusion method in dimethyl sulfoxide as well as the minimal inhibitory concentration (MIC) dilution method, against 9 bacteria. The obtained results from disk diffusion method were assessed in side-by-side comparison with those of Penicillin-g, Ampicillin, Cefotaxime, Vancomycin, Oflaxacin, and Tetracyclin, well-known antibacterial agents. The results from dilution procedure were compared with Gentamycin as antibacterial and Nystatin as antifungal. The antifungal activities are reported on five yeast cultures namely Candida albicans, Kluyveromyces fragilis, Rhodotorula rubra, Debaryomyces hansenii, and Hanseniaspora guilliermondii, and the results are referenced with Nystatin, Ketaconazole, and Clotrimazole, commercial antifungal agents. In most cases, the compounds show strong antifungal activity in the comparison tests.  相似文献   

3.
The total alcohol extract of Juncus acutus L. showed significant anti-eczematic activity. The isolation of the five phenolic glycosides which responsible for this activity were isolated and identified as oxyresveratrol 2-O-β-D-glucopyranoside (1), resveratrol 3′,4′-O,O′-di-β-D-glucopyranoside (2), markhamioside F (3), canthoside B (4), and caffeic acid glucorhamnoside (5). The toxic effect of the alcohol extract of the plant was studied on mice to determine their LD50, which proved to be nontoxic up to 3000 mg/kg body weight. The anti-eczematic activity of the isolated compounds was tested in mice and showed variable effect. Compounds 3 and 4 were found to have the highest activity; they cured eczema by 90 and 100% respectively. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 125–127, March–April, 2006.  相似文献   

4.
Two new steroidal glycosides (1 and 2) have been isolated from the ethanolic extract of the stem bark of Mimusops elengi L. and characterized as stigmasta-5,22-dien-3β-ol-3β-D-glucuropyranosyl-(6′β→1″)-D-glucopyranoside (1) and β-sitosterol-3β-(3″′,6″′,7″′-trihydroxynaphthyl-2″′-carboxyl)-4″-glucopyranosyl-(1″→4′)-glucopyranoside (2) along with the known compounds stigmasta-5-en-3β-ol, lup-20(29)-en-3β-ol, and stigmasta-5-en-3β-D-glucopyranoside. Their structures have been elucidated on the basis of spectral data analysis and chemical reactions.  相似文献   

5.
1H and 13C NMR chemical shifts have been determined and assigned based on PFG 1H, 13C HMQC, and HMBC experiments for 3-(4′-X-benzyl)-4-chromenones (Ia, X = CN and Ib, X = NO2), 3-(4′-X-benzyl)-4-thiochromenones (IIa, X = Cl and IIb, X = Br), (E)-3-(4′-X-benzylidene)-4-chromanones (IIIaIIIe, X = OCH3, CH3, Cl, N(CH3)2, Br), (Z)-3-(4′-X-benzylidene)4-thiochromanones (IVaIVd, X = Cl, Br, F, OCH3), 2-benzyl-1,2,3,4-tetrahydro-1-naphthol (V), 2-benzyl- and (E)-2-benzylidene-1-tetralones (VI and VII), and (E)-2-benzylidene-1-benzosuberol (VIII). The crystal structures have been determined for the following seven compounds: derivatives of 4-chromanones (IIIaIIId), 1-tetrahydronaphtol (V), and 1-tetralones (VI and VII). The molecular features and intermolecular interactions in crystal state have been discussed.  相似文献   

6.
A new bicyclo[3.2.1]octanoid neolignan rel-(7S,8R,1′S,2′R,3′S)-Δ8′-2′-hydroxy-5,1′,3′-trimethoxy-3,4methylenedioxy-7,3′,8,1′-neolignan (1) was isolated from ethanol extract from the fruit of Ocotea heterochroma Mez & Sodiro ex Mez as well as the known compounds β-friedelanol (2), meso-dehydroguaiaretic acid (3), and yangambin (4), whose structures were elucidated on the basis of their comprehensive spectroscopic analysis including 2D NMR data. Lethality bioassay using brine shrimp (Artemia salina Leach) was evaluated with the ethanol extract from the Ocotea heterochroma’s fruit. The toxicity of this extract was greater than the toxicity of those fractions obtained in a first solvent partition (benzene, ethyl acetate, and butanol subfractions) and that of a mixture of acetylated 2′-epimers from the new neolignan 1. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 158–160, March–April, 2009.  相似文献   

7.
Four known isoflavone glucosides have been isolated from the bark of Amorpha fruticosa, which is a traditional remedy plant, for the first time. They were elucidated as 3′-hydroxy-4′-methoxyisoflavone-7-O-β-D-glucopyranoside (1), 4′,6-dimethoxyisoflavone-7-O-β-D-glucopyranoside (2), 4′-methoxyisoflavone-7-O-β-D-glucopyranoside (3), and 3′,5-dihydroxy-4′-methoxyisoflavone-7-O-β-D-glucopyranoside (4), based on the UV, FT-IR, EIMS, FABMS, HREIMS, and NMR (1H and 13C, DEPT, COSY, NOESY, HMQC, and HMBC) data. Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 336–338, July–August, 2006.  相似文献   

8.
Two semi-rigid bipyrazolyl ligands, namely 2,3,5,6-tetramethyl-1,4-bis[(3′,5′-dimethyl-1H -pyrazol-4′-yl)methylene]benzene (H2L) and 2,3,5,6-tetramethyl-1,4-bis[(3′,5′-diphenyl-1H -pyrazol-4′-yl)methylene]benzene (H2L′), and their Ag(I) and Cu(II) complexes have been prepared and structurally characterized by means of X-ray analysis. In the structures of the metal complexes, namely [Ag2(H2L)2](BF4)2·2H2O (1), [Ag(H2L)(NO3)]n (2), [Cu2(H2L)4(SO4)2]·11H2O (3), and {[Ag(H2L′)]BF4}n (4), the bipyrazoles act as bridging ligands to connect two metal atoms. Complexes 2 and 4 exhibit 1-D polymeric structures, while 1 and 3 are discrete molecules with a rectangular dimer or tetragonal prismatic shapes, respectively. Two different conformations, namely cis and trans, have been observed for these bipyrazolyl ligands.  相似文献   

9.
From the the bulbs of Zephyranthes candida (Amaryllidaceae), another two novel ceramides have been isolated and identified. The structures of the two novel compounds were established as (2S,3S,4R,21E,2′R)2-[N-(2′-hydroxynonadecanoyl)-N-(1′′,2′′-dihydroxyethyl)amino]-21-hexacosene-1,3,4-triol, named zephyranamide C (1), and 1,3,4,5,6-pentahydroxy-2-(2′-hydroxyhexacosanoyl-amino)-18-(E)-tetracosene, named zephyranamide D (2). Their structures and stereochemistries were elucidated by spectral techniques including 1H NMR, 13C NMR, as well as HSQC, HMBC, DEPT, and COSY.  相似文献   

10.
A new method for the preparation of 9-β-D-2′-deoxyribofuranosyl-6-methylpurine from inosine (1) is described. Inosine was converted to 6-chloropurinenucleoside (4) via acetylation, chlorination, and deacetylation. Compound 4 was transformed to the key intermediate 6-methylpurinenucleoside (7) via protection of the 2′,3′,5′-hydroxy groups of 4 with 3,4-dihydropyran to give compound 5, then methylation at the 6-position of 5 with dimethyl copper lithium gave compound 6; depyranylation of 6 led to the subsequent selective protection of the 3′,5′-hydroxy groups of 7 with O[Si(I-Pr)2Cl]2 followed by reaction with phenyl chlorothionoformate to give compound 9. Compound 9 was then converted to the target compound 11 via 2′-deoxidation and 3′, 5′-desilylation. The structures of these products were identified by Mass Spectrum (MS), 1H-NMR (Nuclear Magnetic Resonance) spectra and elemental analysis. Translated from Chinese Journal of Organic Chemistry, 2006, 26(10): 1394–1397 (in Chinese)  相似文献   

11.
Ellagic acid derivatives were isolated from Dipentodon sinicus and their structures were identified as 3,3′,4′-tri-O-methylellagic acid (1), 3,3′-di-O-methylellagic acid (2), 4,4′-di-O-methylellagic acid (3), 3,3′-di-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (4), 3,3′,4′-tri-O-methylellagic acid-4′-O-β-D-glucopyranoside (5), 3,3′-di-O-methylellagic acid-4′-O-β-D-glucopyranoside (6), and ellagic acid (7). All the compounds were isolated for the first time from the title plant. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 106–107, March–April, 2007.  相似文献   

12.

Abstract  

Metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1), [Fe(C16-terpy)2](BF4)2 (2), [Co(C16-terpy)2](BPh4)2 (3), [Co(C14-terpy)2](BF4)2 (4), and [Fe(C12C10C5-terpy)2](BF4)2 (5) were synthesized and their physical properties characterized, where C16-terpy, C14-terpy, and C12C10C5-terpy are 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine, 4′-tetradecyloxy-2,2′:6′,2′′-terpyridine, and 4′-5′′′-decyl-1′′′-heptadecyloxy-2,2′:6′,2″-terpyridine, respectively. Complexes 1, 2, and 5 exhibited liquid–crystal properties in the temperature ranges of 371–528 K and 466–556 K, and 88–523 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the Co(II) complexes 1 and 4 exhibited unique spin transitions (T 1/2↓ = 217 K and T 1/2↑ = 260 K for 1 and T 1/2↓ = 250 K and T 1/2↑ = 307 K for 4), so-called ‘reverse spin transition,’ induced by structural phase transitions. Complex 3 exhibited gradual spin-crossover behavior (T 1/2 = 160 K.), and complex 5 exhibited spin transitions (T 1/2↑ = 288 K and T 1/2↓ = 284 K) at the liquid crystal transition temperature. Compounds with multifunction, i.e., magnetic and liquid–crystal properties, are important in the development of molecular materials.  相似文献   

13.
Two new terpenoid coumarins — tadzhiferin (I) and tadzhikorin (II) — have been isolated from the fruit ofFerula tadshikorum M. Pimen. On the basis of physicochemical and spectral investigations, the structure of 7-(9′-hydroxy-3′,7′,11′-trimethyldodeca-2′,6′,10′-trienyloxy)coumarin is proposed for (I) and that of 7-(4′-acetoxy-9′-hydroxy-3′,7′,11′-trimethyldodeca-2′,6′,10′-trienyloxy)coumarin for (II).  相似文献   

14.
Brugnanin (1), a neolignan dioate, was isolated from a mangrove plant Bruguiera gymnorrhiza. Based on spectroscopic interpretation of MS, IR, and NMR data, 1 was elucidated as (7R*,8S*,E)-3-hydroxy-5,5′-dimethoxy-7-O-4′,8-3′-neolignan-7′-ene-9,9′-dioic acid dioctadecyl ester. MTT assay showed that 1 had weak inhibitory activity against growth of CNE-1 nasopharyngeal carcinoma cell line. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 147–149, March–April, 2008.  相似文献   

15.
The ortho-metalated complex [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) was prepared by refluxing in benzene equimolecular amounts of Pd(OAc)2 and secondary benzylamine [a, EtNHCH2Ph; b, t-BuNHCH2Ph followed by addition of excess NaCl. The reaction of the complexes [Pd(x){κ 2 (C,N)-[C6H4CH2NRR′ (Y)}] (2a4a and 2b3b) with a stoichiometric amount of Ph3P=C(H)COC6H4-4-Z (Z = Br, Ph) (ZBPPY) (1:1 molar ratio), in THF at low temperature, gives the cationic derivatives [Pd(OC(Z-4-C6H4C=CHPPh3){κ 2 (C,N)-[C6H4CH2NRR′(Y)}] (5a9a, 4b6b, and 4b′6b′), in which the ylide ligand is O-coordinated to the Pd(II) center and trans to the ortho-metalated C(6)H(4) group, in an “end-on carbonyl”. Ortho-metallation, ylide O-coordination, and C-coordination in complexes (5a9a, 4b6b, and 4b′6b′) were characterized by elemental analysis as well as various spectroscopic techniques.  相似文献   

16.
Three new compounds, 4-hydroxymethylene-7-(9,9,13-trimethylcyclohexyl)-heptanyl-3′,7′,7′-trimethylcyclohexa-2′,4′-dien-1′-oate (1), 1-(n-hexadec-7-enoxy)-6-(n-octadecanoxy)-β-D-glucopyranoside (2), and (Z)-12-hydroxy-9-octadecenoic acid-12-β-D-glucopyranoside (3), along with the known compound hexacosanoic acid (4), were isolated and identified from the rice hulls of Oryza sativa. Their structures were elucidated by 1D and 2D NMR spectroscopic techniques (1H-1H COSY, 1H-13C HETCOR, DEPT) aided by EIMS, FABMS, HRFABMS, and IR spectra. Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 344–347, July–August, 2007.  相似文献   

17.
Two new neodymium complexes, [Nd2(abglyH)6(2,2′-bipy)2(H2O)2] · 4H2O 1 and {[Nd(abglyH)3(H2O)2] · (4,4′-bipy) · 7H2O}n 2 (abglyH2 = N-P-acetamidobenzenesulfonyl-glycine acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been synthesized and their structures have been measured by X-ray crystallography. In 1, nine-coordinated Nd(III) ions are bridged by two synsyn bidentate and two tridentate bridging carboxylate groups from four different abglyH anions to form dinuclear motifs, which are further connected into a 3-D supramolecular framework via hydrogen bonds between the binuclear motifs and the uncoordinated water molecules. In 2, eight-coordinated Nd(III) ions are linked by six carboxylate groups adopting a synsyn bidentate bridging fashion to form a 1-D inorganic–organic alternating linear chain. These polymeric chains generate microchannels extending along the a direction, and these cavities are occupied by discrete tetradecameric water clusters, which interact with their surroundings and finally furnish the 3-D supramolecular network via hydrogen bonds. At the same time, π–π stacking interactions between benzene rings from abglyH anions also play an important role in stabilizing the network.  相似文献   

18.
The structural geometries of three tripodal thiourea receptors, i.e. 1,3,5-triethyl-2,4,6-tris[(N′-methylthioureido)methyl]benzene (1), tris[N′-methyl-N-(2-aminoethyl)thiourea]methane (2), tris[N′-methyl-N-(2-aminoethyl)thiourea]amine (3), and their complexes with F, Cl, Br, I, NO3 , CO3 2−, SO4 2−, HSO4 , PO4 3−, HPO4 2− and H2PO4 were obtained using the density functional theory calculations. Electronic and thermodynamic properties of anion binding complexes of the receptors 1, 2 and 3 were investigated. Recognition abilities of all the receptors in terms of selectivity coefficients are reported. Intermolecular interactions in all the studied complexes occurring via multi-point hydrogen bonding were found. The receptors 1, 2 and 3 were found to be excellent selectivity for phosphate ion and their binding free energy for the phosphate ion are −292.57, −291.77 and −295.01 kcal/mol, respectively.  相似文献   

19.

Abstract  

Oxidation of 1,4-bis(4′-oxo-2′,2′-dimethylpent-2-yl)benzene with hypochlorite produces 1,4-bis(3′-carboxy-2′-methylbut-2-yl)benzene and 3-(4′-carboxyphenyl)-3,3-dimethylpropanoic acid. Cyclization of this mixture forms 3,3,7,7-tetramethyl-1,2,3,5,6,7-hexahydro-s-indacen-1,5-dione, 3,3,7,7-tetramethyl-1,2,3,5,6,7-hexahydro-as-indacen-1,5-dione (5) and 6-carboxy-3,3-dimethyl-1-indanone (6). Ketoacid (6) is converted to the arylpyran pseudoacid 7-carboxy-3-hydroxy-4,4-dimethylisobenzopyran-1-one (7). In the crystal structure of (7), carboxylic acid and the pseudoacid groups each form complementary dimer hydrogen bonds linking the molecules in chains. Contact O···O distances reflect their differing energetics, with pseudoacyl O···O at 2.78(1)Å and carboxylic O···O at 2.62(1)Å.  相似文献   

20.
Five ellagic acid glycosides were isolated from Aphananthe aspera and their structures were identified as 3-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (1), 3-O-methylellagic acid-4′-O-β-D-xylopyranoside (2), 3,3′-di-O-methylellagic acid-4′-O-β-D-xylopyranoside (3), 3,3′, 4-tri-O-methylellagic acid-4′-O-β-D-glucopyranoside (4), and 3,3′-di-O-methylellagic acid-4′-O-α-L-rhamnopyranoside (5) on the basis of spectroscopic analysis. Compound 1 is new, and all the compounds were isolated for the first time from the title plant. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 458–459, September–October, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号