首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MALDI-TOF mass spectrometry was used to detect intracellular molecules from a single intact cell on monolayers of other cells. Intracellular molecules, e.g., histamine, were gradually increased in a mouse bone marrow-derived mast cell by a maturation process. A single cell was captured by a microsuction pipette, and the mass spectra of intracellular histamine were measured directly. Finally, the time course of the intracellular molecular contents and the maturation stage from a single cell were estimated.  相似文献   

2.
Abstract— In studies of the effects of chronic UVB irradiation on dermal connective tissue in the hairless mouse, we observed that the number and size of mast cells was increased. Because mast cells are known to be associated with connective tissue remodeling, we examined and quantified the effect of increasing UVB (290-320 nm) doses on this cell. Groups of mice were exposed to filtered FS-40 Westinghouse lamps (290-400 nm: peak irradiance 313 nm) for 1-5 minimal erythema doses (MED) thrice weekly for 10 weeks. Appropriate controls were included. Biopsies, processed for light microscopy, were stained with toluidine blue. Mast cells were counted in 15 high-magnification fields per specimen with upper and lower dermis scored separately. Significant increases in large densely granular mast cells occurred at 2 MED in the lower dermis, in association with a UVB-exacerbated granulomatous reaction. In the upper dermis, mast cells were significantly increased with 3 MED. These findings suggest that mast cells may play a dual role in UV-irradiated skin with those in the lower dermis related to inflammation processes and those in the upper dermis involved in connective tissue modeling. To gain understanding of the mechanism of mast cell recruitment and maturation, we examined the effect of UVB on mast cell growth factor expression. This was enhanced in the epidermis by UVB, with a shift from cytoplasmic staining to membrane-associated or intercellular staining at 2 MED and higher. Dermal dendritic and mononuclear cells also showed increased reactivity.  相似文献   

3.
The dynamic behaviours of various cells were analysed by video-microscopes and mass spectrometers at the single-cell level. By the video image analysis of a single cell, real dynamic moments of cell behaviour, which were previously accessible only to the imagination, can be visualized — such as the popping of micro-granules, and the exocytosis of neutrophils; a mast cell model cell line, RBL-2H3 cells, and pancreatic beta cell model cell line, MIN-6. In combination with the observations of behaviour, more direct molecular analyses become much more important for showing the molecular interplay in a cell. The combination of mass spectrometries was applied to analysis at the single cellular level. Based on the current progress in these analyses, the future trends in analyses of single cellular dynamism are predicted.  相似文献   

4.
Atrial natriuretic peptide (ANP), a 28 amino acid basic polypeptide, is known to induce histamine release from human and rat mast cells in vitro and cause a wheel formation in rat skin. However, cellular events associated with histamine release are not clearly understood. In this study, we have examined the calcium flux and cGMP formation associated with histamine release in the ANP-treated mast cells. ANP, in vitro, induced mast cell degranulation and histamine release in a dose-dependent manner. ANP also induced an enhanced calcium uptake into cells and increased the cellular level of cGMP in mast cells. A high level of calcium in the media caused an inhibition of ANP-dependent histamine release but enhanced the level of intracellular cGMP of mast cells. ANP inducing a dose-dependent increase in vascular permeability of rat skin was confirmed by the extravasation of the circulating Evans blue. The results indicate ANP induced the histamine release and an increase in vascular permeability through mast cell degranulation in cGMP-independent and calcium uptake-dependent manner.  相似文献   

5.
In a Danish population, basal cell carcinoma (BCC) patients have a higher dermal mast cell prevalence in buttock skin than controls. This finding was supported by a functional link in mice between histamine-staining dermal mast cells and the extent of susceptibility to UV-B-induced systemic immunomodulation. It was important to confirm that this association was maintained in an Australian population with very different ancestry and sun exposure patterns. Australian BCC patients (n = 26) had significantly higher densities of mast cells in the dermis of buttock skin than control subjects (n = 25) (P = 0.0003, Mann-Whitney U-test). However, this correlation was lost at the sun-exposed site of the hand (P = 0.547, Mann-Whitney U-test). To further evaluate whether a relationship exists between dermal mast cell prevalence in sun-exposed skin and incidence of BCC in a larger study, biopsies of dorsal hand skin were obtained from an age-stratified random sample of 166 Queensland subjects, together with the 51 South Australian subjects, and dermal mast cell prevalence was quantified. Older subjects (over the median age of 42 years) had a greater incidence of BCC development (P = 0.0001, chi-square test) and significantly higher mast cell densities in hand skin (P = 0.0001, chi-square test) than younger subjects. However, mast cell density in sun-exposed hand skin was not significantly associated with BCC incidence. Finally, cellular expression of c-kit correlated with mast cell prevalence in non-sun-exposed skin, thereby implicating the stem cell factor-c-kit axis in the intrinsic mechanisms that regulate prevalence. These results show that high prevalence of dermal mast cells in buttock skin but not hand is associated with BCC development in an Australian population.  相似文献   

6.
7.
Mas‐related G protein‐coupled receptor X2 was a mast cell–specific receptor mediating anaphylactoid reactions by activating mast cells degranulation, and it was also identified as a target for modulating mast cell–mediated anaphylactoid and inflammatory diseases. The anti‐anaphylactoid drugs used clinically disturb the partial effect of partial mediators released by mast cells. The small molecule of Mas‐related G protein‐coupled receptor X2 specific antagonists may provide therapeutic action for the anaphylactoid and inflammatory diseases in the early stage. In this study, the Mas‐related G protein‐coupled receptor X2 high expression cell membrane chromatography was coupled online with liquid chromatography and mass spectrometry and successfully used to screen anti‐anaphylactoid components from Magnolia biondii Pamp. Fargesin and pinoresinol dimethyl ether were identified as potential anti‐anaphylactoid components. Bioactivity of these two components were investigated by β hexosaminidase and histamine release assays on mast cells, and it was found that these two components could inhibit β hexosaminidase and histamine release in a concentration‐dependent manner. This Mas‐related G protein‐coupled receptor X2 high expression cell membrane chromatography coupled online with liquid chromatography and mass spectrometry system could be applied for screening potential anti‐anaphylactoid components from natural medicinal herbs. This study also provided a powerful system for drug discovery in natural medicinal herbs.  相似文献   

8.
Although laser irradiation has been reported to promote skin wound healing, the mechanism is still unclear. As mast cells are found to accumulate at the site of skin wounds we hypothesized that mast cells might be involved in the biological effects of laser irradiation. In this work the mast cells, RBL-2H3, were used in vitro to investigate the effects of laser irradiation on cellular responses. After laser irradiation, the amount of intracellular calcium ([Ca2+]i) was increased, followed by histamine release, as measured by confocal fluorescence microscopy with Fluo-3/AM staining and a fluorescence spectrometer with o-phthalaldehyde staining, respectively. The histamine release was mediated by the increment of [Ca2+]i from the influx of the extracellular buffer solution through the cation channel protein, transient receptor potential vanilloid 4 (TRPV4). The TRPV4 inhibitor, Ruthenium Red (RR) can effectively block such histamine release, indicating that TRPV4 was the key factor responding to laser irradiation. These induced responses of mast cells may provide an explanation for the biological effects of laser irradiation on promoting wound healing, as histamine is known to have multi-functions on accelerating wound healing.  相似文献   

9.
Mast cells are well recognized as key cells in allergic reactions, such as asthma and allergic airway diseases. However, the effects of mast cells and TNF-α on T-helper type 2 (Th2) cytokine-dependent asthma are not clearly understood. Therefore, an aim of this study was to investigate the role of mast cells on Th2 cytokine-dependent airway hyperresponsiveness and inflammation. We used genetically mast cell-deficient WBB6F1/J-Kitw/Kitw-v (W/Wv), congenic normal WBB6F1/J-Kit+/Kit+ (+/+), and mast cell-reconstituted W/Wv mouse models of allergic asthma to investigate the role of mast cells in Th2 cytokine-dependent asthma induced by ovalbumin (OVA). And we investigated whether the intratracheal injection of TNF-α directly induce the expression of ICAM-1 and VCAM-1 in W/Wv mice. This study, with OVA-sensitized and OVA-challenged mice, revealed the following typical histopathologic features of allergic diseases: increased inflammatory cells of the airway, airway hyperresponsiveness, and increased levels of TNF-α, intercellular adhesion molecule (ICAM)-1, and vascular cellular adhesion molecule (VCAM)-1. However, the histopathologic features and levels of ICAM-1 and VCAM-1 proteins in W/Wv mice after OVA challenges were significantly inhibited. Moreover, mast cell-reconstituted W/Wv mice showed restoration of histopathologic features and recovery of ICAM-1 and VCAM-1 protein levels that were similar to those found in +/+ mice. Intratracheal administration of TNF-α resulted in increased ICAM-1 and VCAM-1 protein levels in W/Wv mice. These results suggest that mast cells play a key role in a Th2 cytokine-dependent asthma model through production of adhesion molecules, including ICAM-1 and VCAM-1, by liberation of TNF-α.  相似文献   

10.
Many studies have implicated cis-urocanic acid (cis-UCA) in UVB-induced immunomodulation. The strongest evidence came from studies in mice whereby a cis-UCA antibody blocked UVB-induced suppression of delayed-type hypersensitivity responses. Furthermore, in several studies, the cis-UCA antibody at least partially reversed UVB suppression of contact hypersensitivity responses. Previous reports suggested that cis-UCA was immunomodulatory through its effects on keratinocytes, Langerhans cells, fibroblasts, T lymphocytes, natural killer cells and monocytes/macrophages. As dermal mast cells were recently demonstrated to be critical to UVB-induced systemic suppression of certain delayed-type and contact hypersensitivity responses, we investigated whether they were involved in the processes by which cis-UCA was immunomodulatory. Not only was there a correlation between dermal mast cell prevalence and the degree of susceptibility of different strains of mice to the immunomodulatory effects of cis-UCA, there was also a functional link. Mast cell-depleted Wf/Wf mice were rendered susceptible to immunomodulation by cis-UCA injected subcutaneously only after their dorsal skin had been reconstituted with bone marrow-derived mast cell precursors. These studies suggest that mast cells are critical to the processes by which cis-UCA suppresses systemic contact hypersensitivity responses to the hapten, trinitrochlorobenzene, in mice.  相似文献   

11.
The role of mast cells in tumor growth is still controversial. In this study we analyzed the effects of both histamine and pre-formed mediators spontaneously released by mast cells on the growth of two human hepatocellular carcinoma cell lines, HA22T/VGH and HuH-6, with different characteristics of differentiation, biological behavior and genetic defects. We showed that total mast cell releasate, exocytosed granules (granule remnants) and histamine reduced cell viability and proliferation in HuH-6 cells. In contrast, in HA22T/VGH cells granule remnants and histamine induced a weak but significant increase in cell growth. We showed that both cell lines expressed histamine receptors H(1) and H(2) and that the selective H(1) antagonist terfenadine reverted the histamine-induced inhibition of HuH-6 cell growth, whereas the selective H(2) antagonist ranitidine inhibited the histamine-induced cell growth of HA22T/VGH cells. We demonstrated that histamine down-regulated the expression of beta-catenin, COX-2 and survivin in HuH-6 cells and that this was associated with caspase-3 activation and PARP cleavage. On the contrary, in HA22T/VGH cells expression of survivin and beta-catenin increased after treatment with granule remnants and histamine. Overall, our results suggest that mediators stored in mast cell granules and histamine may affect the growth of liver cancer cells. However, mast cells and histamine may play different roles depending on the tumor cell features. Finally, these data suggest that histamine and histamine receptor agonists/antagonists might be considered as "new therapeutic" drugs to inhibit liver tumor growth.  相似文献   

12.
UV irradiation is widely used for the treatment of atopic eczema. In recent years, UVA1 phototherapy has gained increasing attention. This study analyzed the influence of different UV wavelengths--especially UVA1--on histamine release from human basophils and mast cells. The modulation of this parameter might be responsible for some of the therapeutic effects of UV irradiation. Enriched human basophils and human mast cells (HMC1 cell line) were irradiated with increasing doses of UVB, UVA and UVA1 in vitro. After irradiation, different stimulants were added to induce histamine release. In additional experiments, basophils were preincubated with superoxide dismutase, ascorbate or trolox to study the role of antioxidants in the modulation of histamine release after UV irradiation. UVA and UVA1 significantly inhibited histamine release from basophils and mast cells. UVB only had an inhibitory effect on mast cells. Preincubation with superoxide dismutase and ascorbate did not influence the inhibitory effect of UVA1 on basophil histamine release, whereas trolox decreased significantly the histamine release from nonirradiated basophils.  相似文献   

13.
Exposing experimental animals or human volunteers to UVA II (320-340 nm) radiation after immunization suppresses immunologic memory and the elicitation of delayed-in-time hypersensitivity reactions. Previous studies indicated that the mechanisms underlying UVA-induced immune suppression are similar to those described for UVB-induced immune suppression, i.e. transferred by T regulatory cells, overcome by repairing DNA damage, neutralizing interleukin (IL)-10 activity, or injecting recombinant IL-12. Here we continued our examination of the mechanisms involved in UVA II-induced suppression. Antibodies to cis-urocanic acid blocked UVA-induced immune suppression. Treating UVA-irradiated mice with histamine receptor antagonists, calcitonin gene-related peptide (CGRP) receptor antagonists or platelet activating factor receptor antagonists blocked immune suppression in UVA-irradiated mice. In light of the fact that cis-urocanic acid and CGRP target mast cells, which can then release platelet activating factor and histamine, we measured UVA-induced immune suppression in mast cell-deficient mice. No immune suppression was noted in UVA-irradiated mast cell-deficient mice. These findings indicate that exposure to UVA II activates many of the same immune regulatory factors activated by UVB to induce immune suppression. Moreover, they indicate that mast cells play a critical role in UVA-induced suppression of secondary immune reactions.  相似文献   

14.
Striae distensae (SD) or stretch marks are common linear scars of atrophic skin with disintegrating extracellular matrix (ECM) structures. Although fibroblasts contribute to the construction of ECM structure in SD, some studies have reported that mast cell degranulation causes the disruption of ECM in early SD lesions. Lagerstroemia indica flower (LIF) has traditionally been used in India as a diuretic. However, little is known about the effect and molecular action of Lagerstroemia indica flower extract (LIFE) on alleviating SD. This study evaluated the effects of LIFE on mast cell degranulation and the synthesis of ECM components in fibroblasts. LIFE inhibits the adhesion of rat basophilic leukemia (RBL) cells, RBL-2H3 on fibronectin (FN) and the expression of integrin, a receptor for FN, thereby reducing focal adhesion kinase (FAK) phosphorylation. In addition, LIFE attenuated the allergen-induced granules and cytokine interleukin 3 (IL-3) through the adhesion with FN. Moreover, the conditioned medium (CM) of activated mast cells decreases the synthesis of ECM components, and LIFE restores the abnormal expressions induced by activated mast cells. These results demonstrate that LIFE suppresses FN-induced mast cell activation and promotes the synthesis of ECM components in fibroblast, which indicates that LIFE may be a useful cosmetic agent for SD treatment.  相似文献   

15.
Degranulating dermal mast cells in UV-B-irradiated skin have been implicated for many years in the mechanisms of irradiation erythema. There is now considerable evidence that dermal mast cells are important to the processes by which both UV-B radiation and cis-urocanic acid (cis-UCA) suppress immune responses to sensitizing antigens applied to non-irradiated/non-cis-UCA-exposed sites. Mast-cell-depleted mice are resistant to the immunosuppressive effects of UV-B radiation and cis-UCA for 'systemic' immunomodulation. However, these mice gain responsiveness if the dorsal skin is reconstituted six weeks prior to irradiation or cis-UCA administration at that site with cultured bone-marrow-derived mast cells from +/+ mice. The molecular triggers for initiating mast-cell degranulation are being actively sought. Evidence suggests that histamine, and not tumour necrosis factor alpha, is the major mast-cell product that signals altered immune responses to sensitizing antigens applied to non-irradiated, non-cis-UCA-exposed sites. Histamine may have multiple roles, but experiments with indomethacin administered to mice have shown that one process involves induction of prostanoid production.  相似文献   

16.
17.
This study was designed to directly examine the role of mast cells and the histologic changes in the late phase (4-48 h) of hematoporphyrin derivative-induced phototoxicity. BALB/c mice were rendered phototoxic by intraperitoneal injection of HpD, followed by exposure to 1.59 kJ/m2 of 396-406 nm radiation. Immediately before radiation, and at 4, 8, 12, 18, 24 and 48 h after radiation, the ear thickness, serum histamine levels and histologic changes of ears were examined. A maximal net increase in ear thickness of 33.5 +/- 0.3 X 10(-2) mm (mean +/- SE) was noted at 12 h, associated with a maximal net increase of serum histamine (43.3 +/- 11.6 ng/ml, mean +/- SE), and a maximal mast cell degranulation. Other histologic changes consisted of mild epidermal spongiosis at 18-24 h, and a predominant neutrophilic infiltrate, which peaked at 24 h (211.6 +/- 0.4 cells/mm2). No significant alteration was observed in control mice. These data indicated that mast cells participate in the late phase of HpD-induced phototoxicity in mice.  相似文献   

18.
A nano-electrospray ionization (nanoESI) emitter for analysis of a biological solution was developed by packing a nanoESI needle with two types of resins for desalting and preconcentration of target molecules. Determination of secreted histamine and serotonin molecules in cell culture buffers was demonstrated using 5-methyltryptamine as internal standard. The results showed good linearity of target signals in the concentration range from 0.25 to 50.0 ng/mL of histamine or serotonin. These molecules were monitored to be secreted by A23187 (calcium ionophore) stimulant in rat peritoneal mast cells. Using a combination of a video-microscope and a mass spectrometer, we could visualize exocytotic moments and analyze secreted molecules by mass spectrometry simultaneously. Time-dependent release of histamine and serotonin from activated mast cells showed that significant production of these molecules occurred and reached a maximal level at 15 min for serotonin and at 30 min for histamine, respectively. These results showed that this method allows the direct and timely analysis of secreted molecules in biological responses.  相似文献   

19.
Trivalent antigens for degranulation of mast cells   总被引:1,自引:0,他引:1  
Degranulation of basophils and mast cells plays a central role in allergic reactions. Degranulation is a response to cell surface receptor aggregation caused by association of receptors with antibodies bound to multivalent antigens. Tools used in studying this process have included small-molecule divalent antigens, but they suffer from weak signaling apparently due to small aggregate size. We have prepared trivalent antigens that allow formation of larger aggregates and potent responses from mast cells.  相似文献   

20.
Abstract— The action spectrum for photosensitization by topically applied anthracene was determined in human volunteers. Spectral reactivity was demonstrated in the range between 320 and 380 nm, with peak activity at around 360 nm. Three distinct inflammatory responses viz. immediate transient erythema, delayed erythema, and wealing were evoked following exposure to effective wavelengths. The action spectra for these responses were similar but the threshold doses were different. Prior treatment with a mast cell degranulating agent (codeine) abolished anthracene-UVA induced wealing but did not influence the erythema response. These findings suggest that photosensitized damage to cutaneous mast cells may be partially responsible for some of the observed inflammatory responses, but other sites of photochemical injury are also involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号