首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atomic cations of Sr and Mo have been observed to add sequentially up to four molecules of C60 in helium at 0.35 Torr and room temperature in the flow tube of a modified inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The available center-of-mass energy in collision-induced dissociation experiments of approximately 1.3 eV failed to remove C60 from M+(C60)4. A structure is proposed for M+(C60)4 cations in which the bonding involves η6 interaction of the metal with the C60 ligands and η2-to-η2 interactions between the C60 ligands.  相似文献   

2.
The spectral analysis indicates that all isomers of C60O, C70O and C60O2 have an epoxide-like structure (an oxygen atom bridging across a C–C bond). According to the geometrical structure analysis, there are two isomers of fullerene monoxide C60O (the 5,6 bond and the 6,6 bond), eight isomers of fullerene monoxide C70O and eight isomers of fullerene dioxide C60O2. In order to simulate the real reaction conditions at 300 K, the calculation of the different isomers of C60O, C60O2 and C70O fullerene oxides was carried out using the semiempirical molecular dynamics method with two different approaches: (a) consideration of the geometries and thermodynamic stabilities, and (b) consideration of the ozonolysis mechanism. According to the semiempirical molecular dynamic calculation analysis, the probable product of this ozonolysis reaction is C60O with oxygen bridging over the 6–6 bond (C2v). The most probable product in this reaction contains oxygen bridging across in the upper part of C70 (6–6 bond in C70O-2 or C70O-4) an epoxide-like structure. C60O2-1, C60O2-3 and C60O2-5 are the most probable products for the fullerene dioxides. All of these reaction products are consistent with the experimental results. It is confirmed that the calculation results with the semiempirical molecular dynamics method are close to the experimental work. The semiempirical molecular dynamics method can offer both the reaction temperature effect by molecular dynamics and electronic structure, dipole moment by quantum chemistry calculation.  相似文献   

3.
Co-aggregation of fullerene C60 and thiophene has been studied calorimetrically in cyclohexene at 25 °C. The total aggregation heat is found to depend on initial concentration of thiophene and fall between −1.9 and −5.8 kJ mol−1. The corresponding thiophene/fullerene molar ratio (“co-aggregation number”) ranges from 7 to 12. The data are rationalized by formation of heteromolecular nanoaggregates with intermolecular contacts of both fullerene–thiophene and fullerene–fullerene types. A physical model describing interaction between fullerenes and π-donors in solution is substantiated and used to explain heterogeneity of composites containing fullerenes.  相似文献   

4.
The intermolecular potential function of Smith–Thakkar type for C60 has been proposed, and its expression is as follows
The unit of u(r) is J/mol, r is the distance between two C60 molecules center and the unit is nm. Some properties of C60 in the gas and crystal have been studied using the interaction potential of Smith–Thakkar type, such as stability of C60 crystals, virial coefficient and lattice dynamics.  相似文献   

5.
Effect of solvent polarity on the aggregation behaviour of C70 has been investigated in several mixed solvents using optical absorption, fluorescence, dynamic light scattering and scanning electron microscopic measurements and compared with those observed for the other fullerene analogue, C60. It is seen that similar to C60, aggregation of C70 also requires the solvent polarity to exceed some critical value. In terms of solvent dielectric constant the critical solvent polarity, required for C70 aggregation is found to be in the range of 27–31, which is much higher than that required for C60 aggregation (12–14). The large difference in the critical solvent polarity required for C60 and C70 aggregation has been rationalized on the basis of the molecular shapes and the polarizabilities of two fullerene molecules.  相似文献   

6.
Likely candidates for the lowest potential energy minima of (C60)nCa2+, (C60)nF and (C60)nI clusters are located using basin-hopping global optimisation. In each case, the potential energy surface is constructed using the Girifalco form for the C60 intermolecular interaction, an averaged Lennard–Jones C60–ion interaction, and a polarisation potential, which depends on the first few non-vanishing C60 multipole polarisabilities. We find that the ions generally occupy the interstitial sites of a (C60)n cluster, the coordination shell being tetrahedral for Ca2+ and F. The I ion has an octahedral coordination shell in the global minimum for (C60)6I, however for 12  n  8 the preferred coordination geometry is trigonal prismatic.  相似文献   

7.
We present a theoretical study on the two-photon absorption (TPA) properties of C60. On the basis of the equilibrium geometry optimized by B3LYP/6-31G method, we employ the ZINDO method combined SOS formula to investigate the second hyperpolarizability and TPA cross section of C60. The calculated result of the real part of the second hyperpolarizability of C60 is in good agreement with the previous calculation and the experimental observation. In the 400–1000 nm range of TPA wavelength, we calculated TPA cross sections corresponding to all two photon allowed states. As a result, we find that there is only a TPA cross section maximum—995.7×10−50 cm4 s/photon at 518 nm. Another interesting phenomenon is that C60 possesses the distinct TPA process in contrast to other conjugated molecules in terms of three-state approximation. This paper provides a theoretical basis of further studying TPA properties of C60.  相似文献   

8.
Absorption spectra of C60 have been measured in the ranges (a) 190–700 nm in n-hexane solutions at 300 K, (b) 390–700 nm in n-hexane and in 3-methylpentane solutions at 77 K. 40 vibronic bands were observed. They exhibit a large range of bandwidths and intensities, whose significance is discussed. Assignment of electronic transitions has been carried out using the results of theoretical calculations. Vibronic structures have been analyzed within the framework of theories of electronic transitions of polyatomic molecules applied to the Ih symmetry group. Nine allowed 1T1u1Ag transitions have been assigned in the 190–410 nm region. Observed and calculated allowed transition energies and oscillator strengths are compared. Detailed vibronic analyses of the 1 1T1u−1 1Ag and 2 1T1u−1 1Ag transitions illustrate the role of Jahn-Teller couplings. Orbitally forbidden singlet-singlet transitions are observed between 410 and 620 nm. Their vibronic structures were analyzed in terms of concurrent Herzberg-Teller and Jahn-Teller vibronic interactions. The 77 K spectra provided useful information on hot bands and on other aspects of the analyses. Vibronic bands belonging to triplet←singlet transitions were detected between 620 and 700 nm.  相似文献   

9.
We study here the reactions between C60 and planar C5H5+ cations that lead to the formation of [C60C5H5]+ adduct cations in the chemical ionization source of the mass spectrometer. The structures, stabilities and charge locations of some possible isomers of [C60C5H5]+: σ-adduct, π-complex, [1,4]- and [l,2]-addition cations, are studied by AM1 semiempirical molecular orbital calculations. We find that the most stable is the σ-addition cation. Another interesting and stable structure is the π-complex cation which is bonded by the electrostatic interaction at the inter-ring distance of 1.589 Å with the C5v symmetry. The C5H5+ cyclopentadienium cation seems to be an “inverted umbrella” sitting on a five-membered ring of the C60 cage.  相似文献   

10.
The ab initio direct dynamics method at the G2//UQCISD/6-311 + G(d,p) level is employed to study the hydrogen abstraction reaction C2(3Πu)+H2 → C2H+H over a wide temperature range 100–4650 K. The barrier heights obtained for the forward and reverse reactions are 7.78 and 17.53 kcal/mol, respectively. Comparing with one recent experiment, the calculated forward rate constants over the temperature range 2580–4650 K are about 4.4–13.5 times greater and show a steeper temperature-dependent effect. This indicates that further experimental investigation on this simple radical reaction may still be desired. Finally, G2//UQCISD/6-311 + G(2df,2p) calculations are performed to test the reliability of the G2//UQCISD/6-311 + G(d,p) results.  相似文献   

11.
Zwitterionic titanoxanes {Cp[η5-C5H4B(C6F5)3]Ti}2O (I) and {(η5-iPrC5H4)[η5-1,3-iPrC5H3B(C6F5)3]Ti}2O (II), which contain two positively charged Ti(IV) centres in the molecule, are able to catalyse the ring-opening polymerization of -caprolactone (-CL) in toluene solution and in bulk. The process proceeds with a noticeable rate even at room temperature and accelerates strongly on raising the temperature to 60 °C. The best results have been obtained on carrying out the reaction in bulk. Under these conditions, the use of I as a catalyst (-CL:I = 1000:1) gives at 60 °C close to quantitative yield of poly--CL with the molecular mass of 197 000. An increase in the -CL:I ratio to 6000:1 increases the molecular mass of poly--CL to 530 000. Tetrahydrofuran (THF) is also polymerized under the action of I albeit with a lesser rate. However, the molecular mass of the resulting poly-THF can reach rather big values under optimal conditions (up to 217 000 at 20 °C and the THF:I ratio of 770:1). A rise in the reaction temperature from 20 to 60 °C results here to a decrease in the efficiency of the process. Titanoxane II is close to I in its catalytic activity in the -CL polymerization but it is much less active in the polymerization of THF. Propylene oxide (PO), in contrast to -CL and THF, gives with I only liquid oligomers in wide temperature and PO:I molar ratio ranges (−30 to +20 °C, PO:I = 500–2000:1). γ-Butyrolactone and 1-methyl-2-pyrrolidone are not polymerized under the action of I at room temperature. The reactions found are the first examples of catalysis of the cationic ring-opening polymerization by zwitterionic metallocenes of the group IVB metals.  相似文献   

12.
A new complex [Cu (C4H7N3) H2O (4,4′-Hbpy)]·SO4·NO3 was synthesized and X-ray characterized. Elemental analysis, X-ray diffraction and infrared spectroscopy of the complex were performed. The crystal system is orthorhombic. Crystal data: Fw=498.98, spacegroup: P212121. Z=4, a=14.952(3), b=20.491(4), c=6.713 Å. V=2056.7(9) Å. λ(Mo-K)=0.71070 Å. μ=12.18 cm−1, Dcalc=1.66 g/cm3, F000=1032.00, R=0.062, Rw=0.087. X-ray analysis illustrated that 4,4′-bpy is mono-protonated and that there are two kinds of anions in one molecule, which give rise to the hydrogen interaction between the molecules in the crystal. Then an extended three-dimensional network is formed along the hydrogen bonds and π–π bonds between the pyridine rings.  相似文献   

13.
The observation of the surface-enhanced vibrational Raman spectra of vapor-deposited C60 and C70 on rough silver films is reported. Both near-monolayer and multilayer films of pure C60 and of C60/C70 mixtures are studied. The films are obtained by evaporating fullerene samples at temperatures of 683–875 K in ultra-high vacuum. Mixed fullerene samples were greatly enriched in C70 by making use of the slightly different vapor pressures of the two major components at the low end of this temperature range. The spectra contain all the lines of the normal Raman spectra as well as several additional lines caused by a reduction in the stringency of the normal Raman selection rules. These results demonstrate the potential of this technique for detecting small quantities of fullerenes and obtaining their vibrational spectra.  相似文献   

14.
A tetra-nuclear copper(II) complex [Cu4(C54H46N4O14)(OH)2] · 10H2O (1) has been synthesized starting from l-tyrosine, NaOH, 2,6-diformyl-4-methylphenol (dfp) and CuSO4 · 5H2O. Compound 1 crystallizes from an ethanol–water mixture in triclinic space group. In the crystal of 1, two binuclear copper units, related by a center of symmetry, are bridged by two hydroxo bridges and results in the formation of a tetra-nuclear {Cu4} structure. Five lattice water molecules, located in the asymmetric unit, interact among themselves and form an unusual form of a water nonamer. In the crystal, the water nonamer is again hydrogen bonded to the next nonamer forming a chainlike polymer. Each {Cu4} complex unit attaches four such water nonamer chains. Variable temperature magnetic data fit to the Bleaney–Bower’s equation with a Curie type of impurity of S = 0.5. The best fit of the magnetic data to this equation yielded 2J = −217, g = 2.019 and a TIP value of 60 × 10−6 cm3 mol−1.  相似文献   

15.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

16.
The single crystals of the ‘tetragonal' C60 polymer were prepared by the polymerization of C60 single crystals under a pressure of 2.5 GPa at 500 °C. The X-ray structural analysis resulted in the orthorhombic space group Immm; a=9.026(2) Å, b=9.083(2) Å, c=15.077(3) Å, and Z=2; R1/wR2=0.0731/0.1719 for 654 observed reflections and 74 variables. The crystal structure represents a pseudo-tetragonal packing of translationally identical adjacent two-dimensional (2D) layers formed by the polymerization of C60 molecules via [2+2] cycloaddition.  相似文献   

17.
This paper presents the UV and IR absorption spectroscopy of small carbon molecules of C3 observed using a high-resolution Fourier-transform spectrometer. The C3 molecules were produced by irradiation of dimers or larger clusters of acetylene with an ArF laser (λ=193 nm). Sharp UV absorption features with multiple structures were observed in the electronic transition of C3. The sharp UV absorption demonstrates the potential of solid para-hydrogen as a matrix for high-resolution spectroscopy of UV–vis electronic transitions.  相似文献   

18.
The harmonic frequencies and infrared intensities of C9, C11 and C13 have been calculated using SCF and complete active space SCF (CASSCF) methods. The ordering of the harmonic frequencies in C9 is predicted wrongly unless at least the π HOMO and LUMO are included in the active space. Infrared intensities depend crucially on the size of the active space. For linear odd-numbered clusters C13 and larger, the computed SCF spectrum is qualitatively wrong. The recent observation of a band near 1809 cm−1 in the gas phase is explained using our CASSCF results on C13.  相似文献   

19.
The selectivity of attacking sites and the reaction mechanisms of the bis-addition of methyl azide with its corresponding azafulleroid (C60NCH3) have been investigated using AM1 semi-empirical and density functional methods. The whole reaction processes can be divided into two stages. The first stage is the 1,3-dipolar cycloaddition (1,3-DC) reaction of methyl azide with C60NCH3 giving rise to a triazoline intermediate and the second is the N2 elimination. Based on the charge distributions, four patterns of the addition sites have been discussed. In view of the energy barriers, two kinds of 6–6 double bonds, which are in the most and the second vicinities of the –NCH3 addend group of the C60NCH3, are the two most possible attack sites in the reaction of 1,3-DC. The analyses of the π-orbital axis vector (POAV) and the deformation and interaction energies indicate that it is the favorable interaction energy rather than the strain release that dominates the two preferential attacking patterns. The subsequent thermal elimination of N2 takes place via two steps in which the breaking of N–N single bond precedes the cleavage of the C–N bonds of the unsubstituted N atom. The N2 elimination occurs simultaneously with the formation of the new C–N bonds (corresponding to the substituted N atom), giving rise to two isomers of the bisadducts. One is a double azafulleroid with two N atoms bonding to two consecutive 5-6 junctions of the same pentagon, and the other with two N atoms bonding to two alternate 5-6 junctions of the same pentagon. The analysis of the energy results shows that although the former reaction is preferred to some extent, both of the two reactions can take place and both of the two bisadducts are in principle obtainable.  相似文献   

20.
The reaction between RMgCl (two equivalents) and 1,2-W2Cl2(NMe2)4 in hydrocarbon solvents affords the compounds W2R2(NMe2)4, where R = allyl and 1− and 2-methyl-allyl. In the solid state the molecular structure of W2(C3H5)2(NMe2)4 has C2 symmetry with bridging allyl ligands and terminal W---NMe2 ligands. The W---W distance 2.480(1) Å and the C---C distances, 1.47(1) Å, imply an extensive mixing of the allyl π-MOs with the WW π-MOs, and this is supported by an MO calculation on the molecule W2(C3H5)2(NH2)4 employing the method of Fenske and Hall. The most notable interaction is the ability of the (WW)6+ centre to donate to the allyl π*-MO (π3). This interaction is largely responsible for the long W---W distance, as well as the long C---C distances, in the allyl ligand. The structure of the 2-methyl-allyl derivative W2(C4H7)2(NMe2)4 in the solid state reveals a gauche-W2C2N4 core with W---W = 2.286(1) Å and W---C = 2.18(1) Å, typical of WW and W---C triple and single bonds, respectively. In solution (toluene-d8) 1H and 13C NMR spectra over a temperature range −80°C to +60°C indicate that both anti- and gauche- W2C2N4 rotamers are present for the 2-methyl-allyl derivative. In addition, there is a facile fluxional process that equilibrates both ends of the 2-methyl-allyl ligand on the NMR time-scale. This process leads to a coalescence at 100°C and is believed to take place via an η3-bound intermediate. The 1-methyl-allyl derivative also binds in an η1 fashion in solution and temperature-dependent rotations about the W---N, W---C and C=C bonds are frozen out at low temperatures. The spectra of the allyl compound W2(C3H5)2(NMe2)4 revealed the presence of two isomers in solution—one of which can be readily reconciled with the presence of the bridging isomer found in the solid state while the other is proposed to be W23-C3H5)2(NMe2)4. The compound W2R2(NMe2)4 where R = 2,4-dimethyl- pentadiene was similarly prepared and displayed dynamic NMR behaviour explainable in terms of facile η1 = η3 interconversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号