首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dilithium zirconium hexafluoride, Li2ZrF6 (, Z=1), is studied at high pressures using synchrotron angle-dispersive X-ray powder diffraction in a diamond anvil cell at room temperature. At atmospheric conditions, it has a structure with all the cations octahedrally coordinated to fluorine atoms. Above 10 GPa it transforms reversibly to a new polymorph (C2/c, Z=4), in which the coordination polyhedron of the Zr atoms is a distorted square antiprism, while the Li atoms are in the octahedral coordination. The LiF6 octahedra form layers parallel to (100) that are connected by zig-zag chains of the edge-sharing Zr polyhedra running in the [001] direction. The relative change in volumes per one formula unit for both polymorphs is 6% at 11.8 GPa. The relations to other A2BX6-type structures are discussed.  相似文献   

2.
By Rietveld refinement of the X-ray diffraction (XRD) data of powdered Na2Al2B2O7 samples aged for over 3 months, we found that Na2Al2B2O7 at room temperature is a mixture of two phases with space group and P63/m, respectively. The structures of the two phases can be refined with identical cell parameters of a=4.80760(11) Å, c=15.2684(5) Å and are composed by [Al2B2O7]2− double layers stacking alternatively with Na+ ions along the c-direction, but differ at in-plane bond orientations of the BO3/AlO4 groups within the double layers: in P63/m phase B-O1/Al-O1 bonds of the two layers are perfectly aligned, whereas in phase they are twisted by 46.4/41.6° around c-axis against each other. It is also found that a freshly prepared sample contains only the phase, but part of the phase will transfer to P63/m phase slowly at room temperature and the transition can be reversed by heating the aged sample above 220 °C.  相似文献   

3.
High tap density Li3V2(PO4)3 cathode materials were synthesized using mixed LiF and LiNO3 as lithium precursors, LiNO3 was used as the sintering agent. Rietveld refinement results show that no impurities phases are detected in products. Particle size distribution and tap density measurement results show that particle size and tap density of products can be increased by the addition of LiNO3. Electrochemical characterization results show that electrochemical performance of products is declined with the increase in contents of LiNO3 in the lithium precursors. Only a small amount of LiNO3 added in the lithium precursors (mole ratio of LiNO3 to LiF is 1:9) can increase the tap density and also retain the good performance of products. Scanning electron microscopy (SEM) images indicate that the samples prepared by mixed lithium precursors present particles agglomerate, and the particle size increased with increase in contents of LiNO3. Large amount of LiNO3 added in the lithium precursors induces the particles to become spheric and smooth, which worsens the performance. The particles obtained with the mole ratio of LiNO3 to LiF in 1:9 show a flake-like shape with a high specific surface area, which leads to good electrochemical performance.  相似文献   

4.
Titanium dioxide (TiO2) materials of a high chemical purity, as-prepared by the thermal hydrolysis, as well as subsequently modified by adsorption of different metal cations (Fe3+, Co2+, Cu2+), have been investigated by the X-ray diffraction, X-ray fluorescence and AFM microscopy methods. All TiO2 powders have a fine-dispersated anatase structure and consist of grown together nanocrystallites of ∼8-17 nm. TiO2 particles, usually ranging from 100 to 600 nm, show the ability to form large agglomerates, up to 2 μm in size. Contrary to the pure anatase, metal-modified TiO2 particles possess a positive charge on their surface and can be lifted away by the AFM tip from the substrate surface during the scanning. This effect is mostly pronounced for the Fe-modified TiO2 sample, where particles up to 250 nm are removed. The possible interaction mechanisms between different TiO2 particles and the silicon tip are discussed. The electrostatic force has been found to play an essential role in the sample-tip interaction processes, and its value depends on the type of metal cation used.  相似文献   

5.
The temperature evolution of the lattice parameters measured from 295 to 125 K exhibits a small instability below Tc≈278 K, indicating ferroelastic properties of Na2TiGeO5. The behavior is related to the specific crystal structure built of polyhedral layers with shared TiO5 pyramids and GeO4 tetrahedra, alternating with layers of Na+ cations. Antiparallel alignment of the short apical titanyl bond in adjacent rows of the polyhedral layer gives rise to spontaneous strain, when a distortion of the TiO5 groups occurs. Single-crystal structures determined at room temperature and 120 K suggest that {1 1 0} domains, developing below Tc, entail a tetragonal-to-orthorhombic symmetry change. The mechanism is attributed to a shortening of the O–O distance between the polyhedral layers, and to minor shifts of the positions of the Ti atoms and the correlated oxygen atoms along the c-axis. The structure distortion, however, is too small to allow any unambiguous determination of the symmetry-breaking effects. The bulk modulus and its pressure derivative have been determined as B0=89(2) GPa and . A pressure-induced phase transformation takes place at Pc≈12.5 GPa, presumably to an orthorhombic structure. The pressure effect on the transition temperature is given by ΔTcP≈1.76 K/GPa.  相似文献   

6.
The long afterglow phosphors Sr1.97−xBaxMgSi2O7:Eu2+0.01, Dy3+0.02 (x=0, 0.4, 0.8, 1.2, 1.6 and 1.97) were synthesized via high temperature solid-state reaction. The phase identification reveals that the crystal plane spacing becomes greater with the decrease in the Sr/Ba ratio. Phase transition occurs when x=1.97. A nonlinear relationship between the emission peak and the crystal plane spacing is obtained with the decrease of the Sr/Ba ratio. This ascribes to the splitting of the 5d level of the Eu2+ and the change of the crystal field strength. The duration of the afterglow becomes shorter with the decrease of the Sr/Ba ratio. It may ascribe to deeper trap depth, lower trap concentration and the embarrassment of the transfer of carriers.  相似文献   

7.
High-purity powder specimens of AgCa2Mn2V3O12 and NaPb2Mn2V3O12 have been successfully synthesized by solid-state chemical reaction. The Rietveld refinements from X-ray powder diffraction data verified that these compounds have the garnet-type structure (space group , No. 230) with the lattice constant of a=12.596(2) Å for AgCa2Mn2V3O12 and a=12.876(2) Å for NaPb2Mn2V3O12. Calculation of the bond valence sum supported that Mn is divalent and V is pentavalent in these garnets. Estimation of the quadratic elongation and the bond angle variance showed that the distortions of the MnO6 octahedra and the VO4 tetrahedra are significantly suppressed. Our new results of AgCa2Mn2V3O12 and NaPb2Mn2V3O12 are compared to those of AgCa2M2V3O12 and NaPb2M2V3O12 (M=Mg, Co, Ni, Zn).  相似文献   

8.
9.
High resolution X-ray powder diffraction studies have shown SrRhO3 to transform from an orthorhombic Pnma structure at room temperature through an intermediate Imma phase to a tetragonal I4/mcm structure near 800 °C. The orthorhombic Imma phase exists over a very limited temperature range, of less than 20°. The diffraction data suggests the Pnma to Imma transition is continuous and demonstrates that the Imma-I4/mcm transition is first order.  相似文献   

10.
Compounds LiNi1−xSbxO2 (x=0, 0.1, 0.15, 0.2, 0.25) were synthesized by the two-step calcination method. The structural and morphological properties of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis confirms that the uniform solid solution has been formed in the as-prepared compounds without any impurities. It is shown that the crystal lattice parameters (a, c) of the Sb-doped compounds are bigger than those of pure LiNiO2 and the Sb-doped compound with x=0.2 consists of spherical-like nanoparticles with a mean grain size of 50 nm. The electrochemical performances of as-prepared samples were studied via galvanostatic charge-discharge cycling tests. The compound with x=0.2 exhibits excellent capacity retention during the charge-discharge processes due to its reinforced structural stability, and a discharge capacity of 102.4 mAh/g is still obtained in the voltage range of 2.5-4.5 V after 20 cycles. Thermal analysis further confirms that the structural stability of LiNi0.8Sb0.2O2 is superior to that of pure LiNiO2.  相似文献   

11.
12.
BaMgAl10O17:Eu2+ phosphors were synthesized by the flux method. When the appropriate amounts of fluxes are added, the synthesis temperature reduced by at least 200 °C compared with the conventional solid-state reaction method. SEM images demonstrated that addition of the flux in the process of phosphor synthesis benefitted the size and morphology of BaMgAl10O17:Eu2+ phosphor particles. Photoluminescence measurements under VUV excitation indicated that the luminescent intensity of the phosphor enhanced by adding the flux system (BaF2+Li2CO3). Addition of the flux system can not only enhance the luminescence efficiency and improve the stability, but also control the morphology and grain size of the phosphor. Replacement of Ba2+ by Li+ could generate traps, which result in slightly longer decay time.  相似文献   

13.
Despite the large number of studies on the electrochemical behavior of LiV3O8 as a cathode material in nonaqueous lithium ion batteries, little information is available about the electrochemical behavior of LiV3O8 as an anode material in aqueous rechargeable lithium batteries. In this work, nanostructured LiV3O8 is successfully prepared using a low-temperature solid-state method. The electrochemical properties of the LiV3O8 electrode in 1 M, 5 M, and saturated LiNO3 aqueous electrolytes have been characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge experiments. The results show that LiV3O8 electrode in saturated LiNO3 electrolyte exhibits good electrochemical performance in terms of specific capacity and electrochemical cycling performance. LiV3O8 electrode can be reversibly cycled in saturated LiNO3 aqueous electrolyte for 300 cycles at a rate of 0.5 C (300 mA g−1 is assumed to be 1 C rate) with impressive specific capacities.  相似文献   

14.
Impedance spectroscopy measurements and synchrotron X-ray diffraction studies of Sc2(WO4)3 at 400°C have been carried out as a function of pressure up to 4.4 GPa. Ionic conductivity shows normal decrease with increase in pressure up to 2.9 GPa, but then increases at higher pressures. The XRD results show that Sc2(WO4)3 undergoes pressure-induced amorphization at pressures coincident with the reversal in conductivity behavior. The loss of crystal structure at high pressure is consistent with growing evidence of pressure-induced amorphization in negative thermal expansion materials, such as Sc2(WO4)3. The increase in conductivity in the amorphized state is interpreted as the result of an increase in structural entropy and a concomitant reduction of energy barriers for ionic transport.  相似文献   

15.
A laser-heated sample in a diamond anvil cell and synchrotron X-ray radiation was used to carry out structural characterization of the phase transformation of Fe2O3 at high pressures (30-96 GPa) and high temperature. The Rh2O3(II) (or orthorhombic perovskite) structure transforms to a new phase, which exhibits X-ray diffraction data that are indicative of a CaIrO3-type structure. The CaIrO3-type structure exhibited an orthorhombic symmetry (space group: Cmcm) that was stable at temperatures of 1200-2800 K and pressure of 96 GPa (the highest pressure used). Unambiguous assignment of such a structure requires experimental evidence for the presence of two Fe species. Based on the equation of state of gold, the phase boundary of the CaIrO3-type phase transformation was P (GPa)=59+0.0022×(T−1200) (K).  相似文献   

16.
The H2 reduced NiFe2−xCrxO4 can be used to decompose CO2 to C repeatedly. A series of nanocrystalline Ni-ferrite doping different contents of Cr3+ were synthesized by mixed ions co-precipitation method and characterized by XRD, BET and TEM. The results showed that their crystallite sizes were 1-2 nm and BET surface area changed from 220 to 285 m2/g. The evaluation of the activity and stability indicated that Ni-ferrite with 4 wt% Cr3+ dopant could be used repeatedly as many as 60 times and was transformed to FeyNi1−y (0<y<1) alloy and Fe5C2 gradually during the cycle decomposition of CO2 to carbon, especially for no Cr3+ sample. After the 60th reaction, although NiFe2O4 phase just remained 2.1 wt%, the decomposition activity of Ni-ferrite with 4 wt% Cr3+ was still 60% of initial activity. This fact suggests that nanocrystalline FeyNi1−y (0<y<1) alloy from the cycle reaction can contribute to the decomposition of CO2. The results from scanning electron microscopy (SEM), TEM and XRD show that the deposited carbon from CO2 decomposition consisted of amorphous, crystallite and carbon nanotubes.  相似文献   

17.
Spinel compounds Li4Ti5−xAlxO12/C (x=0, 0.05) were synthesized via solid state reaction in an Ar atmosphere, and the electrochemical properties were investigated by means of electronic conductivity, cyclic voltammetry, and charge-discharge tests at different discharge voltage ranges (0-2.5 V and 1-2.5 V). The results indicated that Al3+ doping of the compound did not affect the spinel structure but considerably improved the initial capacity and cycling performance, implying the spinel structure of Li4Ti5O12 was more stable when Ti4+ was substituted by Al3+, and Al3+ doping was beneficial to the reversible intercalation and deintercalation of Li+. Al3+ doping improved the reversible capacity and cycling performance effectively especially when it was discharged to 0 V.  相似文献   

18.
Strengths of major minerals of Earth’s mantle have been measured using in situ synchrotron X-ray diffraction at high pressures. Analysis of the diffraction peak widths is used to derive the yield strengths. Systematic analysis of the experimental result for olivine, wadsleyite, ringwoodite and perovskite indicates that minerals in the upper mantle, the transition zone and the lower mantle have very distinct strength character. Increasing temperature weakens the upper mantle mineral, olivine, significantly. At high temperature and high pressure, the transition zone minerals, wadsleyite and ringwoodite, have higher strengths than the upper mantle mineral. Among all the minerals studied, the lower mantle mineral, perovskite, has the highest strength. While both the upper mantle and the transition zone minerals show a notable strength drop, the strength of the lower mantle mineral shows just an increase of relaxation rate (no strength drop) when the temperature is increased stepwise by 200 K. The strength characteristics of these major mantle minerals at high pressures and temperatures indicate that yield strength may play a crucial role in defining the profile of deep earthquake occurrence with depth.  相似文献   

19.
Zinc hexacyanoruthenate (II) and hexacyanoosmate (II) were prepared and studied from X-ray diffraction (XRD), infrared (IR), and thermogravimetric (TG) data. These compounds were found to be isomorphous with the iron analogues, crystallizing with a rhombohedral unit cell (R−3c space group), where the zinc atom has tetrahedral coordination to N ends of CN groups. For Cs, compounds with formula unit ZnCs2[M(CN)6] and a cubic unit cell (Fm−3m) were also obtained. The crystal structures for the eight compositions were refined from the corresponding X-ray powder diffraction patterns using the Rietveld method. Related to the tetrahedral coordination for the Zn atom, the rhombohedral phase has a porous framework with ellipsoidal cavities of about 12.5×9×8 Å, communicated by elliptical windows of ∼5 Å. Within these cavities the exchangeable alkali metal ions are found. The filling of the cavity volume is completed with water molecules. IR spectrum senses certain charge delocalization from the inner metal, through the π-back donation mechanism. For Os compounds this effect is particularly pronounced, related to a more diffuse d orbitals for this metal.  相似文献   

20.
Spinel LiMn2O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials were successfully synthesized by the citric-acid-assisted sol-gel method with ultrasonic irradiation stirring. The structure and electrochemical performance of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometer, cyclic voltamogram (CV) and the galvanostatic charge-discharge test in detail. XRD shows that all the samples have high phase purity, and the powders are well crystallized. SEM exhibits that LiMn1.4Cr0.2Ni0.4O4 has more uniform cubic-structure morphology than that of LiMn2O4. EDX reveals that a small amount of Mn3+ still exists in LiMn1.4Cr0.2Ni0.4O4. The galvanostatic charge-discharge test indicates that the initial discharge capacities for the LiMn1.4Cr0.2Ni0.4O4 and LiMn2O4 at 0.15 C discharge rates are 130.8 and 130.2 mAh g−1, respectively. After 50 cycles, their capacity are 94.1% and 85.1%, respectively. The CV curve implies that Ni and Cr dual substitutions are beneficial to the reversible intercalation and deintercalation of Li+, and suppress Mn3+ generation at high temperatures and provide improved structural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号