首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method has been developed to fabricate the assembly of Au colloidal nanoparticles (NPs) using SiO(2) monomers. The key strategy was the use of a controlled sol-gel procedure including hydrolysis, deposition, and condensation of tetraethyl orthosilicate (TEOS). Namely, the assembly of Au NPs was created by the anisotropic deposition of SiO(2) monomers and subsequent permanent fixing by the growth of a SiO(2) shell. Various assemblies of Au NPs such as dimer, trimer, and pearl-chain morphology were fabricated by systematically changing the concentration and injection speed of TEOS. A longitudinal plasmon resonance band was observed as a result of the assembly of Au NPs and can be tuned from visible to near-infrared by altering the length of pearl-chain morphology. In addition, single Au NP was homogeneously coated with a SiO(2) shell by means of controlling the deposition rate of SiO(2) monomers during a Sto?ber synthesis without the use of a silane coupling agent or bulk polymer as the surface primer to render the Au surface vitreophilic. The Au NPs (mean size 11.4 nm in diameter) were thus encapsulated into SiO(2) beads with a wide range of sizes (from 20 to 50 nm in diameter). These pure SiO(2)-coated Au beads with tunable shell thickness should be crucial for biosensors, particularly as Raman-tag particles.  相似文献   

2.
A micelle-based method to synthesize dispersed polyaniline (PANI)-Au composite particles by direct oxidation of aniline using AuCl4- as the oxidant is presented. The obtained composite particles have a core-shell structure, where Au nanoparticles of 20 nm mean diameter are encapsulated by PANI of well-defined tetrahedron shape with 150 nm average edge length. The polaron band of the dispersed PANI-Au composite particles is centered at 745 nm and is rather narrow compared to the broad 835 nm absorption of PANI synthesized by the IUPAC procedure. The surface plasmon absorption of Au nanoparticles normally centered at around 520 nm is absent in the composite particles with oxidized PANI. Our results point to a strong electronic interaction between the encapsulated Au nanoparticles and the shell of oxidized PANI. Films and pellets produced from these composite particles show a twofold higher conductivity than IUPAC PANI.  相似文献   

3.
A facile method has been developed to prepare aqueous dispersions of encapsulated conjugated polymer nanoparticles exhibiting high fluorescence brightness. Salient features of the nanoparticles include their small diameter and spherical morphology. Encapsulation of the nanoparticles with a silica shell reduces the rate of photooxidation and allows facile attachment of functional groups for subsequent bioconjugation and nanoparticle assembly. Functionalization of the nanoparticle with amine groups followed by the addition of Au nanoparticles resulted in the formation of nanoparticle assemblies, as evidenced by the efficient quenching of the conjugated polymer fluorescence by the Au nanoparticles.  相似文献   

4.
The layer-by-layer processing of Au/Au(x)Pd(1-x) core/alloy nanoparticles via microwave irradiation (MWI) based hydrothermal heating is described. Alloy shell growth was monitored by the attenuation of surface plasmon resonance (SPR) as a function of shell thickness and composition. Discrete dipole approximation (DDA) correlated the SPR to particle morphology.  相似文献   

5.
聚乙烯吡咯烷酮包裹核壳型Fe_3O_4/Au纳米粒子的制备   总被引:1,自引:1,他引:0  
采用改进的Polyol合成法,以聚乙烯吡咯烷酮(PVP)为表面活性剂制备PVP包裹的单分散的Fe3O4/Au纳米粒子.透射电镜(TEM)和X射线衍射(XRD)分析证实了Fe3O4/Au的核壳型纳米结构,并确定了纳米粒子的尺寸大小和分布.UV-Vis测定显示了所制备的纳米粒子具有光学活性,而振动样品磁强计(VSM)测量显示纳米粒子具有优异的磁化率.  相似文献   

6.
Layered core-shell bimetallic silver-gold nanoparticles were prepared by overdeposition of Au over Ag seeds by the seed-growth method using tetrachloroauric acid, with hydroxylamine hydrochloride as the reductant. The effects of pH, reduction rate, and seeding conditions on the morphology and surface plasmon extinction of the bimetallic nanoparticles were investigated. Nanoparticles prepared by a rapid reduction in the neutral ambient and assembled into two-dimensional nanoparticulate films by adsorption of 2,2'-bipyridine were characterized by energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, surface-enhanced Raman scattering spectroscopy, and transmission electron microscopy. The results are consistent with Ag core and Ag/Au-alloyed shell composition of the nanoparticles. Evidence of the presence of Ag on the surface of the nanoparticles, of enrichment of the Ag/Au alloy shell by Ag toward or at the nanoparticle surface, and of modification of the nanoparticle surface by adsorbed chlorides is also provided. Reduction of the size of the Ag seeds, alloying of Ag and Au in the shell of the nanoparticles, and modification of their surfaces by adsorbed chlorides are tentatively attributed to positive charging of the nanoparticles during the electrocatalytic overdeposition of Au over Ag seeds.  相似文献   

7.
We present the fabrication of core-shell-satellite Au@SiO2-Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.  相似文献   

8.
A novel method combining wet chemistry for synthesis of an Fe core, 532 nm laser irradiation of Fe nanoparticles and Au powder in liquid medium for deposition of an Au shell, and sequential magnetic extraction/acid washing for purification has been developed to fabricate oxidation-resistant Fe@Au magnetic core-shell nanoparticles. The nanoparticles have been extensively characterized at various stages during and up to several months after completion of the synthesis by a suite of electron microscopy techniques (HRTEM, HAADF STEM, EDX), X-ray diffraction (XRD), UV-vis spectroscopy, inductively coupled plasma atomic emission spectroscopy, and magnetometry. The surface plasmon resonance of the Fe@Au nanoparticles is red shifted and much broadened as compared with that of pure colloidal nano-gold, which is explained to be predominantly a shell-thickness effect. The Au shell consists of partially fused approximately 3-nm-diameter fcc Au nanoparticles (lattice interplanar distance, d = 2.36 A). The 18-nm-diameter magnetic core is bcc Fe single domain (d = 2.03 A). The nanoparticles are superparamagnetic at room temperature (300 K) with a blocking temperature, T(b), of approximately 170 K. After 4 months of shelf storage in normal laboratory conditions, their mass magnetization per Fe content was measured to be 210 emu/g, approximately 96% of the Fe bulk value.  相似文献   

9.
This paper describes a performance of precise control of shell thickness in silica-coating of Au nanoparticles based on a sol-gel process, and an investigation into X-ray imaging properties for the silica-coated Au (Au/SiO(2)) particles. The Au nanoparticles with a size of 16.9±1.2 nm prepared through a conventional citrate reduction method were used as core particles. The Au nanoparticles were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source, sodium hydroxide (NaOH) as a catalyst, and (3-aminopropyl) trimethoxysilane (APMS) as a silane coupling agent. An increase in TEOS concentration resulted in an increase in shell thickness. Under certain concentrations of Au, H(2)O, NaOH, and APMS, the Au/SiO(2) particles with silica shell thickness of 6.0-61.0 nm were produced with varying TEOS concentration. Absorption peak wavelength of surface plasmon resonance of the Au/SiO(2) colloid solution depended on silica shell thickness, which agreed approximately with the predictions by Mie theory. The as-prepared colloid solution could be concentrated up to an Au concentration of 0.19 M with salting-out and centrifugation. The concentrated colloid solution showed an X-ray image with high contrast, and a computed tomography value for the colloid solution with an Au concentration of 0.129 M was achieved 1329.7±52.7 HU.  相似文献   

10.
Herein, we prepared four samples, namely gold/poly(sodium-p-styrenesulfonate) (Au/PSS), gold/silicon dioxide (Au/SiO2), gold/titanium dioxide (Au/TiO2), and gold/cuprous oxide (Au/Cu2O) core/shell nanocomposites, to investigate how the surrounding medium affects the ultrafast plasmon dynamics of Au nanoparticles (NPs). We recorded femtosecond transient absorption spectra of Au NPs in Au/PSS, Au/SiO2, Au/TiO2, and Au/Cu2O core/shell nanocomposites at various time delays. We found that the spectral features in the femtosecond transient absorption spectra of Au NPs in Au/TiO2 and Au/Cu2O core/shell nanocomposites were dramatically different from those of Au NPs in Au/PSS and Au/SiO2 core/shell nanocomposites. A comprehensive analysis of the ultrafast plasmon dynamics of Au NPs in the core/shell nanocomposites revealed that following excitation of the resonance plasmon band of Au NPs, the exited electrons could be efficiently transferred into the conduction bands of TiO2 and Cu2O in Au/TiO2 and Au/Cu2O core/shell nanocomposites.  相似文献   

11.
Fabrication of nanorattles with passive shell   总被引:1,自引:0,他引:1  
This investigation describes the formation of a metal nanorattle with a pure metal shell by varying experimental parameters. The galvanic replacement reaction between silver and chloroauric acid was adopted to prepare hollow metal nanoparticles. This approach is extended to produce nanorattles of Au cores and Au shells by starting with Au(core)Ag(shell) nanoparticles as templates. The effect of temperature on the nanostructure of the final product is also considered. The composition of the shell in nanorattles can be controlled by varying the reaction temperature (to form pure gold or gold-silver alloy, for example). X-ray absorption fine structure spectroscopy is conducted to elucidate the fine structure of these nanoparticles. Partial alloying between the Au core and the Ag shell is observed by extended X-ray absorption fine structure (EXAFS).  相似文献   

12.
Carbon encapsulated magnetic nanoparticles(CEMNs)were synthesized by heating an aqueous glucose solution containing Fe-Au(Au coated Fe nanoparticles)nanoparticles at 160-180℃ for 2 h.This novel hydrothermal approach is not only simple but alsoprovides the surface of CEMNs with functional groups like-OH.The formation of carbon encapsulated magnetic nanoparticles wasnot favored when using pure Fe nanoparticles as cores because of the oxidation of Fe nanoparticles by H2O during the reaction and,therefore,the surfaces of the naked Fe nanoparticles had to be coated by Au shell in advance.TEM,XRD,XPS and VSMmeasurments characterized that they were uniform carbon spheres containing some embedded Fe-Au nanoparticles,with asaturation of 14.6 emu/g and the size of the typical product is$350 nm.  相似文献   

13.
Surface-enhanced Raman scattering (SERS) of p-aminothiophenol (PATP) molecules adsorbed onto assemblies of Au(core)/Cu(shell) nanoparticles is reported. We compare it with the SERS spectrum of PATP adsorbed onto gold nanoparticles: both the absolute and relative scattered intensities of various bands in the two spectra are very different. The difference in relative intensity can be ascribed to chemical effects; the chemical enhancement ratio of the two substrates is approximately 3-5. A theoretical analysis based on a charge-transfer model is carried out, which yields a consistent result and shows that the difference in chemical enhancement is mainly due to the state densities and Fermi levels of the substrates. The difference in absolute intensity originates from electromagnetic (EM) enhancement. EM enhancement of Au(core)/Cu(shell) nanoparticles is unlike that of single-component gold or copper SERS-active substrates. The core/shell particle size for optimal enhancement is about 20 nm in the case of a 632.8 nm incident laser (the size ratio of the core and shell layers is about 0.6).  相似文献   

14.
贵金属纳米结构的光学性质与其尺寸、形貌、介质环境等因素的相关性是基础研究领域的重要内容.本文利用时域有限差分(FDTD)方法,计算了不同构型二聚体和多聚体的表面等离子体共振(SPR)特性.研究了金纳米棒结构和组装方式对SPR耦合效应的影响,模拟结果与实验规律比较吻合.金纳米棒二聚体的光吸收结果表明:对于肩并肩(S-S)的组装体,随着间隙的减小,金纳米棒的横向SPR(SPRT)峰有较小的红移,而纵向SPR(SPRL)峰显著蓝移.对于端对端(E-E)的组装体,随着组装体间隙的减小,金纳米棒的SPRT峰无明显移动,而SPRL峰显著红移,并在近红外较长波段范围内出现新的共振峰,其强度随着间隙的减小而增强;结合弹簧振子模型和纳米颗粒在外电场作用下的极化,对组装体共振吸收峰的移动和新的耦合共振峰的出现提出了初步的解释.  相似文献   

15.
铁氧化物/金磁性核壳纳米粒子的制备及其富集与SERS研究   总被引:3,自引:0,他引:3  
本文用种子生长法制备铁氧化物/金磁性核壳纳米粒子, 并利用SERS对其磁场靶向性进行了检测.  相似文献   

16.
A Pep-1 peptide-modified liposomal (Pep1-Lipo) carrier system was investigated to increase the intracellular delivery of gold nanoparticles (Au NPs). Au NPs with a mean diameter of 13 nm were successfully encapsulated into the inner aqueous compartment of the novel carrier using an ethanol injection technique, reserving the distinctive optical characteristics of the surface plasmon resonance peak around 530 nm. The Au NP-loaded liposomal carrier was physically characterized as 150-170 nm in size and 45 mV in zeta potential. Dark field microscopic observation demonstrated that in vitro cellular association and/or translocation of the nanoprobes into the cells was increased by Pep1-Lipo carriers compared to bare Au NPs. In conclusion, this novel liposomal formulation is a promising platform for the intracellular delivery of metallic nanoprobes including Au NPs.  相似文献   

17.
通过水热合成法制备了单分散碳微球, 并以此单分散碳微球为核, 利用其表面修饰的银纳米粒子作为种子, 进一步还原制备了以碳微球为核、以金为壳的金纳米壳(Nanoshell)球体. 通过透射电子显微镜和紫外可见吸收光谱对其形态以及光谱性质进行了表征. 研究结果表明, 采用该种方法制备出来的碳微球具有良好的单分散性, 表面修饰简便快捷, 利用碳微球为核制备的金纳米壳球体尺寸可控, 在近红外范围内有强吸收. 实验结果证明该方法是制备金纳米壳球体的一种有效新方法.  相似文献   

18.
以没食子酸为还原剂和稳定剂,用种子生长法制备出粒径均匀、单分散性和稳定性好、近球形的Ag/Au 核壳纳米粒子.高分辨透射电镜(HRTEM)与 X-射线能量色散光谱仪(EDX)测试表明,在Ag/Au摩尔比为1:1.6时,Au已完全包裹在Ag纳米粒子表面时,平均粒径为25 nm.以此摩尔比制备的Ag/Au核壳纳米粒子为探针...  相似文献   

19.
贵金属纳米结构的光学性质与其尺寸、形貌、介质环境等因素的相关性是基础研究领域的重要内容. 本文利用时域有限差分(FDTD)方法,计算了不同构型二聚体和多聚体的表面等离子体共振(SPR)特性. 研究了金纳米棒结构和组装方式对SPR耦合效应的影响,模拟结果与实验规律比较吻合. 金纳米棒二聚体的光吸收结果表明:对于肩并肩(S-S)的组装体,随着间隙的减小,金纳米棒的横向SPR(SPRT)峰有较小的红移,而纵向SPR(SPRL)峰显著蓝移. 对于端对端(E-E)的组装体,随着组装体间隙的减小,金纳米棒的SPRT峰无明显移动,而SPRL峰显著红移,并在近红外较长波段范围内出现新的共振峰,其强度随着间隙的减小而增强;结合弹簧振子模型和纳米颗粒在外电场作用下的极化,对组装体共振吸收峰的移动和新的耦合共振峰的出现提出了初步的解释.  相似文献   

20.
An unusual aggregation phenomenon that involves positively charged poly(L-lysine) (PLL) and negatively charged gold nanoparticles (Au NPs) is reported. Discrete, submicrometer-sized spherical aggregates are found to form immediately upon combining a PLL solution with gold sol (diameter approximately 14 nm). These PLL-Au NP assemblies grow in size with time, according to light scattering experiments, which indicates a dynamic flocculation process. Water-filled, silica hollow microspheres (outer diameter approximately microns) are obtained upon the addition of negatively charged SiO2 NPs (diameter approximately 13 nm) to a suspension of the PLL-Au NP assemblies, around which the SiO2 NPs form a shell. Structural analysis through confocal microscopy indicates the PLL (tagged with a fluorescent dye) is located in the interior of the hollow sphere, and mostly within the silica shell wall. The hollow spheres are theorized to form through flocculation, in which the charge-driven aggregation of Au NPs by PLL provides the critical first step in the two-step synthesis process ("flocculation assembly"). The SiO2 shell can be removed and re-formed by decreasing and increasing the suspension pH about the point-of-zero charge of SiO2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号