首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three types of commercially available organophilic Montmorillonite (Cloisite 30B, 25A and 15A) were used to prepare VARTM epoxy resin nanocomposites in order to study the effect of the nanoclay organophilic modification on the epoxy matrix. The morphology of the dispersions was investigated through XRD and TEM analyses. The thermal stability of the nanocomposites was studied by means of HI-RES TG measurements and the influence of the nanoclay on the viscosity of the resin was investigated through rheological measurements. It was found that the nanoclay modification had no significant influence on the dispersion and on the thermal properties of the nanocomposites. Areas of exfoliated and intercalated morphology were observed. The viscosity of the resin furthermore did not exceed the critical value of the infusion process.  相似文献   

2.
The cure of an epoxy resin (3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate) in the presence of silica nanoparticles modified by 3-(triethoxysilyl)propylsuccinic anhydride has been studied. Optimal conditions for the preparation of optically transparent polymer nanocomposites with increased glass transition temperatures are determined. The glass transition temperatures of the above nanocomposites are 50–70°C higher than those of the unfilled epoxy resin synthesized under the same conditions (100°C).  相似文献   

3.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo-montmorillonite (O-MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The dispersion state of the MMT in the matrix was investigated by X-ray diffraction and scanning electronic microscopy. The thermal stability of the epoxy nanocomposites was examined by TGA. Thermal stability of the epoxy nanocomposite is dependent upon the dispersion state of the OMMT in the epoxy matrix although all the epoxy nanocomposites had enhanced thermal stability compared with the neat epoxy resin. The thermal stability of the epoxy resin nanocomposites was correlated with the dispersion state of the MMT in the epoxy resin matrix.  相似文献   

4.
In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak–Berggren autocatalytic model.  相似文献   

5.
Summary : An investigation was carried out into the cure kinetics of carbon nanofiber (CNF) mat-epoxy nanocomposites, composed of bisphenol-A based epoxy resin and diethylene triamine as a curing agent. It was observed that the rate of cure reaction for CNF mat-epoxy nanocomposites was higher than that for neat epoxy resin at low curing temperatures and the presence of the CNF mat produced the maximum influence at a certain curing temperature and time. At high curing temperature and long curing times, the effect of CNF mat on the cure rate was insignificant. The CNF mat-epoxy composite exhibited somewhat lower value of activation energy than that of the neat epoxy system at the beginning of the curing stage. The weight fraction of CNF mat also affected the cure reaction of epoxy nanocomposites at the same curing temperature. As the amount of CNF mat increased, the cure rate was higher at the same cure time. However, at high CNF mat loading, the cure reaction was retarded since the amount of epoxy and hardener decreased dramatically at high CNF contents together with the hindering effect of the CNF mat on the diffusion of epoxy resin and the curing agent, leading to lower crosslinking efficiency. Although the curing efficiency of epoxy nanocomposites dropped at high CNF mat content, the glass transition temperature (Tg) was still high due to the ultra-high strength of the CNF mat. The cure kinetics of CNF mat-epoxy nanocomposites was in good agreement with Kamal's model.  相似文献   

6.
The effect of nano-reinforcements on fracture behaviour of bulk epoxy nanocomposites and mode-I interlaminar fracture toughness of filament-wound basalt fibre-reinforced laminates was studied. Fracture energy of the bulk epoxy nanocomposites significantly increased with acrylic tri-block-copolymer addition but remained unchanged with incorporation of nanoclay. Delamination fracture toughness was not influenced by the presence of nanoparticles in the matrix. Decreasing fibre volume fraction, on the other hand, significantly improved interlaminar fracture energy. Rigid fibres in these composites constrict the stress field ahead of the crack-tip. Hence, increasing resin content enhanced composite delamination energy by increasing the capacity for matrix deformation. Interlaminar crack propagation through the composite was observed to occur mainly by interfacial failure and matrix cracking.  相似文献   

7.
The thermal behavior of epoxy-smectite nanocomposites (hybrids) is examined by non-isothermal thermogravimetry (TG, DTG and DTA) in air atmosphere. It has been shown that the thermal stability of hybrids is much greater than that of epoxy resin and strongly depends on both the smectite loading and the type of the gallery cations of organically modified smectites. The kinetics of degradation of nanocomposites is significantly influenced by the presence of smectites and proceeds in three stages. Stage I is attributed to the effect of quaternized ammonium ion exchanged smectite, as stages II and III are associated with the decomposition of the bulk epoxy resin. Because of the interfacial interactions and thesilicate-polymer multilayered nanoscale organization, the nanocomposites act as excellent heat insulator and mass transport barrier, which shift the thermal decomposition peaks towards much higher temperatures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Cloisite 30B as a modified kind of nanoclay was utilized for the formation of 3D network based on novolac resin with high thermal stable properties. Two types of phenolic resins including neat novolac (NR) and modified novolac resin were used to create a compatible matrix with nanoclay. For this purpose, NR modified with (3‐chloropropyl)triethoxysilane (CPTES) to form SiNR. For improvement of thermal behaviors, Cloisite 30B was dispersed in matrix via ultrasonic waves and cured with hexamethylenetetramine (HMTA) to form 3D network. X‐ray diffraction (XRD) analysis was used to measure the d‐spacing in intercalated systems and results indicated the optimum amount of clay for appropriate thermal properties. Investigation of the thermal properties of the samples by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the presence of Cloisite 30B in matrix resulted in much higher thermal stability and char yield with respect to modification of novolac resin originated from formation of 3D Si–O–Si network. Also, cured modified resin and its nanocomposites showed much higher thermal stability than cured NR and its nanocomposites. Such nanocomposite materials with high thermal stability have potential applications in advanced fields such electronic, industrial molds, coatings, adhesives, and aerospace composites.  相似文献   

9.
Blue light emitting cationic polyfluorene polymer(PF)/montmorillonite (MMT) nanocomposites were prepared by solution intercalation and exfoliation method to evaluate the effect of MMT on the nanocomposite structures, properties and morphologies. The properties of PF-MMT composites, containing 1-50 mass% MMT, were characterized unambiguously with the help of multiple analytical techniques, with focus on the keto defect and photostability of PF in the nanocomposites. XRD and HRTEM studies reveal both exfoliation of MMT galleries at lower content of MMT in composites and intercalation of PF chains into the MMT galleries at higher MMT content. The nanocomposites show higher thermal stability than pristine PF as anchorage of nanoclay in PF matrix occur through the electrostatic interaction between nanoclay and polymer. The decrease in Si-O-Si stretching frequency during exfoliation is much higher than in intercalation, as Si-O-Si experience lesser hindrance to vibrate in exfoliated MMT galleries. The gradual redshift of π-π(*) transition peak of PF with increasing MMT content in composites confirms the uncoiling of PF in clay galleries. The photoluminescence characteristics reveal interruption of interchain interaction in this intercalated and exfoliated organic/inorganic hybrid system, which reduces the low-energy emission that results from keto defect. Due to very high aspect ratio of MMT, it can act as an efficient exciton blocking layer and a barrier to oxygen diffusion, which may lead to a device with high color purity and enhanced photostability. Again current-voltage characteristics of nanocomposite films confirm the retention of LED properties after nanocomposite formation.  相似文献   

10.
The effect of layered silicate nanoclays, nano-silica and double-walled carbon nanotubes (DWNTs) on the thermal stability and fire reaction properties of two aerospace grade epoxy resins (a high temperature curing tetra-functional and a low temperature curing bi-functional resin) has been investigated using thermal analysis, cone calorimetry, LOI and UL-94 techniques. The morphology of the polymer-clay nanocomposites, determined by X-ray diffraction and transmission electron microscopy indicated intercalated structures. The addition of nanoclays (5-wt%) to both resins had a thermal destabilisation effect in the low temperature regime (<400 °C), but led to higher char yield at higher temperatures. The inclusion of nano-silica at 30-wt% significantly improved the thermal stability of the resins while DWNTs had an adverse effect due to their poor dispersion in the matrix. The nanoclays and carbon nanotubes significantly increased the fire resistance of the tetra-functional epoxy resin while a minimal effect was observed for the bi-functional resin.  相似文献   

11.
Linear isocyanate‐terminated poly(urethane‐imide) (PUI) with combination of the advantages of polyurethane and polyimide was directly synthesized by the reaction between polyurethane prepolymer and pyromellitic dianhydride (PMDA). Then octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS) and PUI were incorporated into the epoxy resin (EP) to prepare a series of EP/PUI/POSS organic–inorganic nanocomposites for the purpose of simultaneously improving the heat resistance and toughness of the epoxy resin. Their thermal degradation behavior, dynamic mechanical properties, and morphology were studied with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and transmission electron microscope (TEM). The results showed that the thermal stability and mechanical modulus was greatly improved with the addition of PUI and POSS. Moreover, the EP/PUI/POSS nanocomposites had lower glass transition temperatures. The TEM results revealed that POSS molecules could self assemble into strip domain which could switch to uniform dispersion with increasing the content of POSS. All the results could be ascribed to synergistic effect of PUI and POSS on the epoxy resin matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
We have prepared epoxy/polyhedral oligomeric silsesquioxane (POSS) nanocomposites by photopolymerization from octakis(glycidylsiloxy)octasilsesquioxane (OG) and diglycidyl ether of bisphenol A. We used nuclear magnetic resonance, Raman, and Fourier transform infrared spectroscopies to characterize the chemical structure of the synthetic OG. Differential scanning calorimetry and dynamic mechanical analysis (DMA) revealed that the nanocomposites possessed higher glass transition temperatures than that of the pristine epoxy resin. Furthermore, DMA indicated that all of the nanocomposites exhibited enhanced storage moduli in the rubbery state, a phenomenon that we ascribe to both the nano‐reinforcement effect of the POSS cages and the additional degree of crosslinking that resulted from the reactions between the epoxy and OG units. Thermogravimetric analysis revealed that the thermal stability of the nanocomposites was better than that of the pristine epoxy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1927–1934, 2009  相似文献   

13.
Epoxy/clay nanocomposites with a high degree of exfoliation were achieved by intercalating liquid crystalline epoxy into clay intragallery as well as using a so-called ‘solution compounding’ process. In this process, clay modified was first treated with trichloromethane to form organoclay-trichloromethane suspension followed by liquid crystalline epoxy modification. The liquid crystalline epoxy grafted clay was then mixed extensively with epoxy to form epoxy/nanoclay composites. The mechanism of exfoliation was explored by monitoring the change of morphology of organoclay during each stage of processing with X-ray diffraction (XRD). The liquid crystalline epoxy grafted clay synthesised was characterised by fourier transform infrared spectroscopy (FT-IR) and polarising optical microscopy (POM). The clay platelets uniformly dispersed and highly exfoliated in the whole epoxy matrix were observed using transmission electron microscopy (TEM) and FT-IR imaging system. The epoxy nanocomposites were fabricated by incorporating different liquid crystalline epoxy grafted clay loading. The results revealed that the incorporation of liquid crystalline epoxy grafted clay resulted in a significant improvement in glass transition temperature (Tg) derived from dynamic mechanical analysis (DMA) and thermal stability measured by thermogravimetric analysis (TGA).  相似文献   

14.
Thermal properties of the organic–inorganic bicontinuous nanocomposites prepared via in situ two-stage polymerization of various silanes, epoxy, and amine monomers are investigated, and the impact of filler content and its organic compatibility on thermal stability of these nanocomposites is studied. Two series of epoxy–silica nanocomposites, namely, EpSi-A and EpSi-B containing 0–20 wt% silica, are synthesized. An epoxy–silane coupling agent is employed to improve the organic compatibility of silica in EpSiB nanocomposites. The composites synthesized via two-stage polymerization are characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. DSC and TG/differential thermogravimetric results reveal substantially high glass transition (T g) and excellent thermal stability of the bicontinuous nanocomposites as compared with pristine epoxy polymer. Both T g and thermal properties, however, considerably vary depending on the organic compatibility of the nanocomposites. Significantly higher decomposition temperatures are recorded in case of EpSi-B nanocomposites owing to the chemical links between the epoxy and silica phases. Kinetic studies also show relatively higher activation energies of pyrolysis for EpSi-B nanocomposites.  相似文献   

15.
In this work, the effect of quaternary ammonium salt containing nanoclay content (1–5 wt%) on phase morphology, rheology, cure kinetics, and mechanical properties of the vinyl ester resin (VER)‐based nanocomposites was studied. The morphological characterization including d‐spacing measurement, microscopy observation and phase‐height image processing were performed on the prepared nanocomposites using small angel X‐ray scattering (SAXS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). According to the results obtained from these techniques, it was concluded that an intercalated morphology existed for all the nanocomposites. The kinetic analyses of the isothermal curing followed by storage modulus obtained from the rheometry experiments are shown to be an affective rheological characteristic to investigate the cure behavior of VER/clay nanocomposites. In addition, the most important finding regarding the effect of nanoclay on the cross‐linking behavior of VER systems lays on the chemisorption and physisorption of the reacting monomers and initiator molecules on the nanoclay platelets surface which is found to be responsible for the retardation of the cure reaction caused by organoclay. Eventually, the mechanical characterizations were performed through the tensile, flexural and impact analysis tests. In this case, a considerable improvement of the bulk mechanical responses such as tensile and flexural strengths and also the corresponding moduli were observed for the nanocomposites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   

17.
Nanocomposites, based on tetrabromo-bisphenol-A epoxy and aniline formaldehyde condensates, containing 5 and 10 % organically modified montmorillonite (O-MMT), were prepared. The morphologies of these nanocomposites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influences of O-MMT on the dynamic cure kinetics, thermal stability, and mechanical properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and non-destructive ultrasonic testing techniques. The XRD and SEM results indicated a good dispersion of O-MMT within the epoxy matrix. The relation between the activation energy, E a, and the degree of cure, α, for the examined systems was obtained by applying model-free isoconversional Kissinger–Akahira–Sunose method. As α increases, E a increases gradually, almost independent of the amount of O-MMT. The dynamic cure kinetics of the neat epoxy system as well as its nanocomposites were described by ?estàk–Berggren, [SB (m, n)], autocatalytic model. The O-MMT enhances the thermal stability of the examined epoxy system. The results of the mechanical properties indicated that the addition of O-MMT enhances the Young’s and shear elastic modulus and microhardness. The values of these parameters increase with increasing O-MMT loading.  相似文献   

18.
ABS/organo montmorillonite (OMT) nanocomposites and ABS/brominated epoxy resin-antimony oxide (BER-AO)/OMT nanocomposites were prepared via melt compounding. The dispersion of OMT in nanocomposites was investigated by wide-angle X-ray diffraction and transmission electron microscopy. The results revealed an intercalated structure in ABS/OMT nanocomposites and the OMT layers mainly distribute in SAN phase. However, a completely exfoliated structure was found in ABS/BER-AO/OMT nanocomposites and OMT layers preferentially located in the BER phase which indicated that the OMT platelets had a much higher affinity with brominated epoxy resin than ABS resin. Based on the above morphological results, a schematic diagram of the ABS/OMT, ABS/BER-AO/OMT nanocomposites was established. The thermal degradation behavior was characterized by thermogravimetry. The results showed that the exfoliation of OMT can enhance the thermal stability of pure ABS resin and ABS/BER blends. An increase in the limited oxygen index (LOI) value was observed with the addition of OMT and it was found that such an enhancement is closely related to the morphologies of the chars formed after combustion. A synergistic effect between OMT and BER-AO during the combustion of the nanocomposites was found and a schematic mechanism was presented.  相似文献   

19.
The tracking phenomenon, a carbonaceous process, in epoxy nanocomposite material has been studied under the AC and DC voltage in the present work. It was observed that the tracking is more severe under the DC voltages, especially under positive DC voltage when compared to negative DC voltage. The leakage current during the tracking studies was measured and moving average technique was used to characterize the trend of current flow. It was noticed that an increase in nanoclay content to epoxy resin shows a reduction in magnitude of leakage current flow during tracking test. It was also observed that the magnitude of leakage current is more under negative DC voltage compared with positive DC/AC voltage. The magnitude of leakage current and the tracking time shows inverse relationship as evident from the present study. A drastic reduction in contact angle was observed for the specimens subjected to tracking test. It was confirmed that surface discharges also cause permanent damage to the insulating material. The WAXD studies indicated that up to 5 wt% of nanoclay in epoxy resin resulted in exfoliated structure. The TEM studies were carried out on the nanocomposite structures. The TG-DTA results showed that a maximum degradation of epoxy resin occurs at around 300 °C. From the EPR study it is realized that, in the tracking formed zone the spin concentration is more in epoxy nanocomposites indicating that tracking as a damage generating process.  相似文献   

20.
This paper reports the improvement of the mechanical properties of epoxy/nanoclay/multi-walled carbon nanotube (MWNT) nanocomposites prepared by the solution casting method for a range of pre-cure temperatures (room temperature, 50, and 70 °C), cure temperature (120, 130, and 140 °C), nanoclay content (0.5, 1.0, 1.5 wt%) and content of MWNT (0.2, 0.6, 1.0 wt%) for three levels. The influence of these parameters on the mechanical properties of epoxy/nanoclay/MWNT has been investigated using Taguchi's experimental design. The output measured responses are the tensile properties (tensile modulus, tensile strength and strain at break), impact strength and fracture toughness. From the Analysis of Mean (ANOM) and Analysis of Variance (ANOVA), MWNT content, pre-cure temperature and cure temperature had the most significant effects for the impact strength with contribution percentages of 38%, 28% and 23% respectively. However, for the fracture toughness and strain at break, the enhancements of properties come from the nanoclay content (59%), MWNT content (18%) and pre-cure temperature (23%). While the improvement in tensile strength was influenced by nanoclay and MWNT content, the cure temperature has a stronger effect on the tensile modulus. In this respect, Taguchi method points to the Taguchi method, in this way, points to the dominant parameters and gives the optimum parameter settings for each mechanical property. Confirmation experiments were performed with the optimum parameter settings and the mechanical properties were measured compared with the predicted results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号