首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Traditional quantitative structure-activity relationship (QSAR) models aim to capture global structure-activity trends present in a data set. In many situations, there may be groups of molecules which exhibit a specific set of features which relate to their activity or inactivity. Such a group of features can be said to represent a local structure-activity relationship. Traditional QSAR models may not recognize such local relationships. In this work, we investigate the use of local lazy regression (LLR), which obtains a prediction for a query molecule using its local neighborhood, rather than considering the whole data set. This modeling approach is especially useful for very large data sets because no a priori model need be built. We applied the technique to three biological data sets. In the first case, the root-mean-square error (RMSE) for an external prediction set was 0.94 log units versus 0.92 log units for the global model. However, LLR was able to characterize a specific group of anomalous molecules with much better accuracy (0.64 log units versus 0.70 log units for the global model). For the second data set, the LLR technique resulted in a decrease in RMSE from 0.36 log units to 0.31 log units for the external prediction set. In the third case, we obtained an RMSE of 2.01 log units versus 2.16 log units for the global model. In all cases, LLR led to a few observations being poorly predicted compared to the global model. We present an analysis of why this was observed and possible improvements to the local regression approach.  相似文献   

4.
As the structural diversity in a quantitative structure-activity relationship (QSAR) model increases, constructing a good model becomes increasingly difficult, and simply performing variable selection might not be sufficient to improve the model quality to make it practically usable. To combat this difficulty, an approach based on piecewise hypersphere modeling by particle swarm optimization (PHMPSO) is developed in this paper. It treats the linear models describing the sought-for subsets as hyperspheres which have different radii in the data space. According to the attribute of each hypersphere, all compounds in the training set are allocated to hyperspheres to construct submodels, and particle swarm optimization (PSO) is applied to search the optimal hyperspheres for finding satisfactory piecewise linear models. A new objective function is formulated to determine the appropriate piecewise models. The performance is assessed using three QSAR data sets. Experimental results have shown the good performance of this technique in improving the QSAR modeling.  相似文献   

5.
6.
7.
8.
Selecting most rigorous quantitative structure-activity relationship (QSAR) approaches is of great importance in the development of robust and predictive models of chemical toxicity. To address this issue in a systematic way, we have formed an international virtual collaboratory consisting of six independent groups with shared interests in computational chemical toxicology. We have compiled an aqueous toxicity data set containing 983 unique compounds tested in the same laboratory over a decade against Tetrahymena pyriformis. A modeling set including 644 compounds was selected randomly from the original set and distributed to all groups that used their own QSAR tools for model development. The remaining 339 compounds in the original set (external set I) as well as 110 additional compounds (external set II) published recently by the same laboratory (after this computational study was already in progress) were used as two independent validation sets to assess the external predictive power of individual models. In total, our virtual collaboratory has developed 15 different types of QSAR models of aquatic toxicity for the training set. The internal prediction accuracy for the modeling set ranged from 0.76 to 0.93 as measured by the leave-one-out cross-validation correlation coefficient ( Q abs2). The prediction accuracy for the external validation sets I and II ranged from 0.71 to 0.85 (linear regression coefficient R absI2) and from 0.38 to 0.83 (linear regression coefficient R absII2), respectively. The use of an applicability domain threshold implemented in most models generally improved the external prediction accuracy but at the same time led to a decrease in chemical space coverage. Finally, several consensus models were developed by averaging the predicted aquatic toxicity for every compound using all 15 models, with or without taking into account their respective applicability domains. We find that consensus models afford higher prediction accuracy for the external validation data sets with the highest space coverage as compared to individual constituent models. Our studies prove the power of a collaborative and consensual approach to QSAR model development. The best validated models of aquatic toxicity developed by our collaboratory (both individual and consensus) can be used as reliable computational predictors of aquatic toxicity and are available from any of the participating laboratories.  相似文献   

9.
10.
11.
12.
One popular metric for estimating the accuracy of prospective quantitative structure-activity relationship (QSAR) predictions is based on the similarity of the compound being predicted to compounds in the training set from which the QSAR model was built. More recent work in the field has indicated that other parameters might be equally or more important than similarity. Here we make use of two additional parameters: the variation of prediction among random forest trees (less variation among trees indicates more accurate prediction) and the prediction itself (certain ranges of activity are intrinsically easier to predict than others). The accuracy of prediction for a QSAR model, as measured by the root-mean-square error, can be estimated by cross-validation on the training set at the time of model-building and stored as a three-dimensional array of bins. This is an obvious extension of the one-dimensional array of bins we previously proposed for similarity to the training set [Sheridan et al. J. Chem. Inf. Comput. Sci.2004, 44, 1912-1928]. We show that using these three parameters simultaneously adds much more discrimination in prediction accuracy than any single parameter. This approach can be applied to any QSAR method that produces an ensemble of models. We also show that the root-mean-square errors produced by cross-validation are predictive of root-mean-square errors of compounds tested after the model was built.  相似文献   

13.
14.
丛湧  薛英 《物理化学学报》2013,29(8):1639-1647
对89 个苯并异噻唑和苯并噻嗪类丙型肝炎病毒(HCV) NS5B聚合酶非核苷抑制剂进行了定量构效关系(QSAR)研究. 采用遗传算法组合偏最小二乘(GA-PLS)和线性逐步回归分析(LSRA)两种特征选择方法选择最优描述符子集, 然后建立多元线性回归和偏最小二乘线性回归模型. 并首次尝试使用遗传算法耦合支持向量机方法(GA-SVM)对两种特征选择方法所选的描述符子集分别建立非线性支持向量机回归模型. 三种机器学习方法所建模型均得到比较满意的预测效果. 采用LSRA所选的6 个描述符建立的三个QSAR模型对于测试集的相关系数为0.958-0.962, GA-SVM法给出最好的预测精度(0.962). 采用GA-PLS所选的7个描述符建立的三个QSAR模型对于测试集的相关系数为0.918-0.960, 偏最小二乘回归模型的结果最好(0.960). 本工作提供了一种有效的方法来预测丙型肝炎病毒抑制剂的生物活性, 该方法也可以扩展到其他类似的定量构效关系研究领域.  相似文献   

15.
We describe the application of particle swarms for the development of quantitative structure-activity relationship (QSAR) models based on k-nearest neighbor and kernel regression. Particle swarms is a population-based stochastic search method based on the principles of social interaction. Each individual explores the feature space guided by its previous success and that of its neighbors. Success is measured using leave-one-out (LOO) cross validation on the resulting model as determined by k-nearest neighbor kernel regression. The technique is shown to compare favorably to simulated annealing using three classical data sets from the QSAR literature.  相似文献   

16.
17.
In quantitative structure-activity relationship (QSAR) modeling, when compounds in a training set exhibit a significant structural distinction between each other, in particular when chemicals of biological interest interacting on the receptor involve a different mechanism, it might be difficult to construct a single linear model for the whole population of compounds of interest with desired residuals. Developing a piecewise linear local model can be effective to circumvent the aforementioned problem. In this paper, piecewise modeling by the particle swarm optimization (PMPSO) approach is applied to QSAR study. The minimum spanning tree is used for clustering all compounds in the training set to form a tree, and the modified discrete PSO is applied to divide the tree to find satisfactory piecewise linear models. A new objective function is formulated for searching the appropriate piecewise linear models. The proposed PMPSO algorithm was used to predict the antagonism of angiotensin II. The results demonstrated that PMPSO is useful for improvement of the performance of regression models.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号