首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A virtual screening method is presented that is grounded on a receptor-derived pharmacophore model termed "virtual ligand" or "pseudo-ligand". The model represents an idealized constellation of potential ligand sites that interact with residues of the binding pocket. For rapid virtual screening of compound libraries the potential pharmacophore points of the virtual ligand are encoded as an alignment-free correlation vector, avoiding spatial alignment of pharmacophore features between the pharmacophore query (i.e., the virtual ligand) and the candidate molecule. The method was successfully applied to retrieving factor Xa inhibitors from a Ugi three-component combinatorial library, and yielded high enrichment of actives in a retrospective search for cyclooxygenase-2 (COX-2) inhibitors. The approach provides a concept for "de-orphanizing" potential drug targets and identifying ligands for hitherto unexplored or allosteric binding pockets.  相似文献   

2.
X-ray crystallographic data of the influenza virus neuraminidase in complex with different inhibitors were used to generate chemical feature-based pharmacophore models of the binding site of this enzyme. The models were built using the software package Catalyst. Pharmacophore hypotheses derived from the 3-D structure of ligands cocrystallized with the enzyme were then compared with automatically generated common feature pharmacophore hypotheses for neuraminidase inhibitors. The latter models were found to contain fewer features and exhibited lower selectivity in virtual screening experiments. Some functions of the inhibitors obviously participate in more than one mode of interaction with the enzyme (charge-charge interaction and hydrogen bond) or form hydrogen bonds to several amino acids. Since such multiple interactions of one chemical function cannot be included into the Catalyst data format, strategies are presented to overcome these limitations. Finally, the results of 3-D database searching experiments using these hypotheses are described.  相似文献   

3.
4.
Recent trends in the computer-aided design of diverse and focussed combinatorial libraries are surveyed. First, chemical data input, storage and retrieval including chemical database management and virtual chemical structure enumeration are outlined as background. Then, the optimization of ADMET parameters, diversity maximization, molecular similarity search, QSAR-based virtual screening, pharmacophore search and molecular docking are discussed.  相似文献   

5.
We present a new algorithm for identifying molecules that display a pharmacophore, or in general a structural motif, by efficiently constructing and screening huge virtual combinatorial libraries of diverse compounds. The uniqueness of this algorithm is its ability to build and screen libraries of ca. 10(18) 3D molecular conformations within a reasonable time scale, thereby increasing the chemical space that can be virtually screened by many orders of magnitude. The algorithm may be used to design new molecules that display a desired pharmacophore on predefined sets of chemical scaffolds. This is demonstrated herein by screening a library of backbone cyclic peptides to find candidate peptido- and proteinomimetics.  相似文献   

6.
Hydroxamic acid derivatives with metal ion binding properties were collected from the literature to generate a pharmacophore and 3D-QSAR model for HIV strand transfer inhibition. The derived pharmacophore model (AAAHRR) recognizes both metal ion binding site and hydrophobic group. The QSAR model generated using this hypothesis expressed statistical significance (r 2 = 0.971 for the training set and q 2 = 0.913 for the test set). The ability of this pharmacophore model to retrieve other metal ion binding inhibitors was examined by screening the ChemBank database (ligandinfo) incorporated with 10 known strand transfer inhibitors. The studied favourable and unfavourable contours of chemical features (H-bond donor, acceptor and hydrophobic sites) revealed the role of hydrophobic substitution at the fluorobenzene ring and cyclization of the metal ion binding hydroxamic acid in effective integrase inhibition. Analysis of the frontier orbitals, HOMO and LUMO revealed that the nucleophilic / electrophilic interactions depend on the significant overlapping observed at the azaindole and hydroxamic acid groups. In essence, the generated pharmacophore model is competent enough to disclose the essential site-specific interactions involved in the inhibition of HIV integrase, and hence can be used in virtual screening to identify novel scaffolds as leads with increased anti-viral potency.  相似文献   

7.
The generation of diversity and its further selection by an external system is a common mechanism for the evolution of the living species and for the current drug design methods. This assumption allows us to label the methods based on generation and selection of molecular diversity as "Darwinian" ones, and to distinguish them from the structure-based, structure-modulation approaches. An example of a Darwinian method is the inverse QSAR. It consists of the computational generation of candidate chemical structures and their selection according to a previously established QSAR model. New trends in the field of combinatorial chemical syntheses comprise the concepts of virtual combinatorial synthesis and virtual or computational screening. Virtual combinatorial synthesis, closely related to inverse QSAR, can be defined as the computational simulation of the generation of new chemical structures by using a combinatorial strategy to generate a virtual library. Virtual screening is the selection of chemical structures having potential desirable properties from a database or virtual library in order to be synthesized and assayed. This review is mainly focused on graph theoretical drug design approaches, but a survey with key references is provided that covers other simulation methods.  相似文献   

8.
Squalene synthase (SQS) is a potential target for hyperlipidemia treatment. To identify novel chemical scaffolds of SQS inhibitors, we generated 3D-QSAR pharmacophore models using HypoGen. The best quantitative pharmacophore model, Hypo 1, was selected for virtual screening using two chemical databases, Specs and Traditional Chinese Medicine database (TCM). The best-mapped hit compounds were then subjected to filtering by Lipinskis rule of five and docking studies to refine the hits. Finally, five compounds were selected from the top-ranked hit compounds for SQS inhibitory assay in vitro. Three of these compounds could inhibit SQS in vitro, and should be further evaluated pre-clinically as a treatment for hyperlipidemia.  相似文献   

9.
Summary Glycogen Synthase Kinase-3 is a regulatory serine/threonine kinase, which is being targeted for the treatment of a number of human diseases including type-2 diabetes mellitus, neurodegenerative diseases, cancer and chronic inflammation. Selective GSK-3 inhibition is an important requirement owing to the possibility of side effects arising from other kinases. A pharmacophore mapping strategy is employed in this work to identify new leads for selective GSK-3 inhibition. Ligands known to show selective GSK-3 inhibition were employed in generating a pharmacophore map using distance comparison method (DISCO). The derived pharmacophore map was validated using (i) important interactions involved in selective GSK-3 inhibitions, and (ii) an in-house database containing different classes of GSK-3 selective, non-selective and inactive molecules. New Lead identification was carried out by performing virtual screening using validated pharmacophoric query and three chemical databases namely NCI, Maybridge and Leadquest. Further data reduction was carried out by employing virtual filters based on (i) Lipinski’s rule of 5 (ii) van der Waals bumps and (iii) restricting the number of rotatable bonds to seven. Final screening was carried out using FlexX based molecular docking study.  相似文献   

10.
The sphingosine kinase 1 (SK1)/sphingosine-1-phosphate (S1P) signaling pathway is a crucial target for numerous human diseases from cancer to cardiovascular diseases. However, available SK1 inhibitors that target the active site suffer from poor potency, selectivity and pharmacokinetic properties. The selectivity issue of the kinases, which share a highly-conserved ATP-pocket, can be overcome by targeting the less-conserved allosteric sites. SK1 is known to function minimally as a dimer; however, the crystal structure of the SK1 dimer has not been determined. In this study, a template-based algorithm implemented in PRISM was used to predict the SK1 dimer structure and then the possible allosteric sites at the dimer interface were determined via SiteMap. These sites were used in a virtual screening campaign that includes an integrated workflow of structure-based pharmacophore modeling, virtual screening, molecular docking, re-screening of common scaffolds to propose a series of compounds with different scaffolds as potential allosteric SK1 inhibitors. Finally, the stability of the SK1-ligand complexes was analyzed by molecular dynamics simulations. As a final outcome, ligand 7 having a 4,9-dihydro-1H-purine scaffold and ligand 12 having a 2,3,4,9-tetrahydro-1H-β-carboline scaffold were found to be potential selective inhibitors for SK1.  相似文献   

11.
In order to identify novel chemical classes of factor Xa inhibitors, five scoring functions (FlexX, DOCK, GOLD, ChemScore and PMF) were engaged to evaluate the multiple docking poses generated by FlexX. The compound collection was composed of confirmed potent factor Xa inhibitors and a subset of the LeadQuest screening compound library. Except for PMF the other four scoring functions succeeded in reproducing the crystal complex (PDB code: 1FAX). During virtual screening the highest hit rate (80%) was demonstrated by FlexX at an energy cutoff of -40 kJ/mol, which is about 40-fold over random screening (2.06%). Limited results suggest that presenting more poses of a single molecule to the scoring functions could deteriorate their enrichment factors. A series of promising scaffolds with favorable binding scores was retrieved from LeadQuest. Consensus scoring by pair-wise intersection failed to enrich the hit rate yielded by single scorings (i.e. FlexX). We note that reported successes of consensus scoring in hit rate enrichment could be artificial because their comparisons were based on a selected subset of single scoring and a markedly reduced subset of double or triple scoring. The findings presented in this report are based upon a single biological system and support further studies.  相似文献   

12.
Yersinia organisms cause many infectious diseases by invading human cells and delivering their virulence factors via the type three secretion system (T3SS). One alternative strategy in the fight against these pathogenic organisms is to interfere with their T3SS. Previous studies demonstrated that thiol peroxidase, Tpx is functional in the assembly of T3SS and its inhibition by salicylidene acylhydrazides prevents the secretion of pathogenic effectors. In this study, the aim was to identify potential inhibitors of Tpx using an integrated approach starting with high throughput virtual screening and ending with molecular dynamics simulations of selected ligands. Virtual screening of ZINC database of 500,000 compounds via ligand-based and structure-based pharmacophore models retrieved 10,000 hits. The structure-based pharmacophore model was validated using high-throughput virtual screening (HTVS). After multistep docking (SP and XP), common scaffolds were used to find common substructures and the ligand binding poses were optimized using induced fit docking. The stability of the protein–ligand complex was examined with molecular dynamics simulations and the binding free energy of the complex was calculated. As a final outcome eight compounds with different chemotypes were proposed as potential inhibitors for Tpx. The eight ligands identified by a detailed virtual screening protocol can serve as leads in future drug design efforts against the destructive actions of pathogenic bacteria.  相似文献   

13.
Database screening using receptor-based pharmacophores is a computer-aided drug design technique that uses the structure of the target molecule (i.e. protein) to identify novel ligands that may bind to the target. Typically receptor-based pharmacophore modeling methods only consider a single or limited number of receptor conformations and map out the favorable binding patterns in vacuum or with a limited representation of the aqueous solvent environment, such that they may suffer from neglect of protein flexibility and desolvation effects. Site-Identification by Ligand Competitive Saturation (SILCS) is an approach that takes into account these, as well as other, properties to determine 3-dimensional maps of the functional group-binding patterns on a target receptor (i.e. FragMaps). In this study, a method to use the FragMaps to automatically generate receptor-based pharmacophore models is presented. It converts the FragMaps into SILCS pharmacophore features including aromatic, aliphatic, hydrogen-bond donor and acceptor chemical functionalities. The method generates multiple pharmacophore hypotheses that are then quantitatively ranked using SILCS grid free energies. The pharmacophore model generation protocol is validated using three different protein targets, including using the resulting models in virtual screening. Improved performance and efficiency of the SILCS derived pharmacophore models as compared to published docking studies, as well as a recently developed receptor-based pharmacophore modeling method is shown, indicating the potential utility of the approach in rational drug design.  相似文献   

14.
15.
The cysteine protease cathepsin S (CatS) is involved in the pathogenesis of autoimmune disorders, atherosclerosis, and obesity. Therefore, it represents a promising pharmacological target for drug development. We generated ligand-based and structure-based pharmacophore models for noncovalent and covalent CatS inhibitors to perform virtual high-throughput screening of chemical databases in order to discover novel scaffolds for CatS inhibitors. An in vitro evaluation of the resulting 15 structures revealed seven CatS inhibitors with kinetic constants in the low micromolar range. These compounds can be subjected to further chemical modifications to obtain drugs for the treatment of autoimmune disorders and atherosclerosis.  相似文献   

16.
The rational design of small molecules that mimic key residues at the interface of interacting proteins can be a successful approach to target certain biological signaling cascades causing pathophysiological outcome. The A-Kinase Anchoring Protein, i.e. AKAP-Lbc, catalyses nucleotide exchange on RhoA and is involved in cardiac repolarization. The oncogenic AKAP-Lbc induces the RhoA GTPase hyperactivity and aberrantly amplifies the signaling pathway leading to hypertrophic cardiomyocytes. We took advantage of the AKAP-LbcRhoA complex crystal structure to design in silico small molecules predicted to inhibit the associated pathological signaling cascade. We adopted the strategies of pharmacophore building, virtual screening and molecular docking to identify the small molecules capable to target AKAP-Lbc and RhoA interactions. The pharmacophore model based virtual screening unveils two lead compounds from the TIMBAL database of small molecules modulating the targeted protein-protein interactions. The molecular docking analysis revealed the lead compounds’ potentialities to establish the essential chemical interactions with the key interactive residues of the complex. These features provided a road map for designing additional potent chemical derivatives and fragments of the original lead compounds to perturb the AKAP-Lbc and RhoA interactions. Experimental validations may elucidate the therapeutic potential of these lead chemical scaffolds to deal with aberrant AKAP-Lbc signaling based cardiac hypertrophy.  相似文献   

17.
随着计算技术的发展和分子模拟软件的日趋成熟, 虚拟筛选已经在药物发现过程中发挥着越来越重要的作用. 在虚拟筛选过程中, 所使用化合物库的质量对先导化合物发现的成功率起着至关重要的作用. 本文通过对已知药物库、天然产物库、中药原植物化学成分库、筛选常用商业化合物库以及研究者所在实验室建立的化合物库的分析比较, 从化合物库的分子多样性、化学空间和分子骨架等多个方面提取并对比每一种化合物库的特征, 发现了已知药物库与中药原植物化学成分库的特征相似性, 揭示了中药原植物化学成分库作为筛选库的类药性优势, 并且深化了对几种筛选用化合物库特征的认识和理解.  相似文献   

18.
BRD4靶点和多种肿瘤密切相关,是具有良好成药性的热门靶点.本文选取活性较好且结构差异较大的BRD4小分子抑制剂作为训练集分子,基于配体小分子共同特征(HipHop)方法使用Discovery Studio 3.0分子模拟软件构建了药效团.药效团通过测试集验证、ROC曲线验证(SE(sensitivity)=0.937...  相似文献   

19.
Matrix metalloproteinase-9 (MMP-9) is an attractive target for cancer therapy. In this study, the pharmacophore model of MMP-9 inhibitors is built based on the experimental binding structures of multiple receptor-ligand complexes. It is found that the pharmacophore model consists of six chemical features, including two hydrogen bond acceptors, one hydrogen bond donor, one ring aromatic regions, and two hydrophobic (HY) features. Among them, the two HY features are especially important because they can enter the S1′ pocket of MMP-9 which determines the selectivity of MMP-9 inhibitors. The reliability of pharmacophore model is validated based on the two different decoy sets and relevant experimental data. The virtual screening, combining pharmacophore model with molecular docking, is performed to identify the selective MMP-9 inhibitors from a database of natural products. The four novel MMP-9 inhibitors of natural products, NP-000686, NP-001752, NP-014331, and NP-015905, are found; one of them, NP-000686, is used to perform the experiment of in vitro bioassay inhibiting MMP-9, and the IC50 value was estimated to be only 13.4 µM, showing the strongly inhibitory activity of NP-000686 against MMP-9, which suggests that our screening results should be reliable. The binding modes of screened inhibitors with MMP-9 active sites were discussed. In addition, the ADMET properties and physicochemical properties of screened four compounds were assessed. The found MMP-9 inhibitors of natural products could serve as the lead compounds for designing the new MMP-9 inhibitors by carrying out structural modifications in the future.  相似文献   

20.
Natural products were analyzed to determine whether they contain appealing novel scaffold architectures for potential use in combinatorial chemistry. Ring systems were extracted and clustered on the basis of structural similarity. Several such potential scaffolds for combinatorial chemistry were identified that are not present in current trade drugs. For one of these scaffolds a virtual combinatorial library was generated. Pharmacophoric properties of natural products, trade drugs, and the virtual combinatorial library were assessed using a self-organizing map. Obviously, current trade drugs and natural products have several topological pharmacophore patterns in common. These features can be systematically explored with selected combinatorial libraries based on a combination of natural product-derived and synthetic molecular building blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号