首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Upon stimulation with lipopolysaccharide, murine RAW264.7 macrophages generated a high amount of nitric oxide. Pretreatment of macrophages with methyl-β-cyclodextrin, which disrupted the lipid raft microdomains of the plasma membrane, inhibited the generation of nitric oxide by down-regulating the expression of inducible nitric oxide synthase. Methyl-β-cyclodextrin exposure significantly inhibited the degradation of IκB-α, blocked the translocation of p65/RelA into the nuclei and prevented the activation of the NF-κB signaling pathway. The results suggest that the expression of inducible nitric oxide synthase and the consequent production of nitric oxide depend on the integrity of the lipid rafts.  相似文献   

3.
We report direct electrochemistry of the iNOS heme domain in a DDAB film on the surface of a basal plane graphite electrode. Cyclic voltammetry reveals FeIII/II and FeII/I couples at -191 and -1049 mV (vs Ag/AgCl). Imidazole and carbon monoxide in solution shift the FeIII/II potential by +20 and +62 mV, while the addition of dioxygen results in large catalytic waves at the onset of FeIII reduction. Voltammetry at higher scan rates (with pH variations) reveals that the FeIII/II cathodic peak can be resolved into two components, which are attributable to FeIII/II couples of five- and six-coordinate hemes. Digital simulation of our experimental data implicates water dissociation from the heme as a gating mechanism for ET in iNOS.  相似文献   

4.
We have investigated the kinetics of NO escape from Geobacillus stearothermophilus nitric oxide synthase (gsNOS). Previous work indicated that NO release was gated at position 223 in mammalian enzymes; our kinetics experiments include mutants at that position along with measurements on the wild type enzyme. Employing stopped-flow UV-vis methods, reactions were triggered by mixing a reduced enzyme/N-hydroxy-l-arginine complex with an aerated buffer solution. NO release kinetics were obtained for wt NOS and three mutants (H134S, I223V, H134S/I223V). We have confirmed that wt gsNOS has the lowest NO release rate of known NOS enzymes, whether bacterial or mammalian. We also have found that steric clashes at positions 223 and 134 hinder NO escape, as judged by enhanced rates in the single mutants. The empirical rate of NO release from the gsNOS double mutant (H134/I223V) is nearly as rapid as that of the fastest mammalian enzymes, demonstrating that both positions 223 and 134 function as gates for escape of the product diatomic molecule.  相似文献   

5.
Tumor target-derived soluble secretary factor has been known to influence macrophage activation to induce nitric oxide (NO) production. Since heme oxygenase-1 (HO-1) is induced by a variety of conditions associated with oxidative stress, we questioned whether soluble factor from tumor cells induces HO-1 through NO-dependent mechanism in macrophages. We designated this factor as a tumor-derived macrophage-activating factor (TMAF), because of its ability to activate macrophages to induce iNOS. Although TMAF alone showed modest activity, TMAF in combination with IFN-gamma significantly induced iNOS expression and NO synthesis. Simultaneously, TMAF induced HO-1 and this induction was slightly augmented by IFN-gamma. Surprisingly, however, induction of HO-1 by TMAF was not inhibited by the treatment with the highly selective iNOS inhibitor, 1400 W, indicating that TMAF induces the HO-1 enzyme by a NO-independent mechanism. While rIFN-gamma alone induced iNOS, it had no effect on HO-1 induction by itself. Collectively, the current study reveals that soluble factor from tumor target cells induces HO-1 enzyme in macrophages. However, overall biological significance of this phenomenon remains to be determined.  相似文献   

6.
The effects of ferulic acid and tetramethylpyrazine, two active ingredients of the Chinese herbal medicineLigusticum wallichii Franchat, on the generation of superoxide anion and nitric oxide in macrophages were studied. Ferulic acid, but not tetramethylpyrazine, scavenges superoxide anion dose-dependently. Tetramethylpyrazine inhibits the expression of the iNOS gene, and consequently decreases the formation of nitric oxide. However, ferulic acid shows no effect on iNOS expression and NO production. The results suggest that the protective effects of extracts ofLigusticum wallichi Franchat against ischemic injury might be due to the scavenging of superoxide anion and the regulation of NO production.  相似文献   

7.
Electronic structure calculations show that the cofactor H4B can be a key factor in a proton transfer relay in nitric oxide synthase, and that 4-amino-H4B cannot fulfill this role.  相似文献   

8.
Nitric oxide synthase (NOS) catalyzes the formation of NO via a consecutive two-step reaction. In the first step, L-arginine (Arg) is converted to N-hydroxy-L-arginine (NOHA). In the second step, NOHA is further converted to citrulline and nitric oxide (NO). To assess the mechanistic differences between the two steps of the reaction, we have used resonance Raman spectroscopy combined with a homemade continuous-flow rapid solution mixer to study the structural properties of the metastable dioxygen-bound complexes of the oxygenase domain of inducible NOS (iNOSoxy). We identified the O-O stretching frequency of the substrate-free enzyme at 1133 cm-1. This frequency is insensitive to the presence of tetrahydrobiopterin, but it shifts to 1126 cm-1 upon binding of Arg, which we attribute to H-bonding interactions to the terminal oxygen atom of the heme iron-bound dioxygen. In contrast, the addition of NOHA to the enzyme did not bring about a shift in the frequency of the O-O stretching mode, because, unlike Arg, there is no H-bond associated with the terminal oxygen atom of the dioxygen. The substrate-specific H-bonding interactions play a critical role in determining the fate of the key peroxy intermediate. In the first step of the reaction, the H-bonds facilitate the rupture of the O-O bond, leading to the formation of the active ferryl species, which is essential for the oxidation of the Arg. On the other hand, in the second step of the reaction, the absence of the H-bonds prevents the premature O-O bond cleavage, such that the peroxy intermediate can perform a nucleophilic addition reaction to the substrate, NOHA.  相似文献   

9.
Pulsed electromagnetic field (PEMF) has been shown to improve the rate of peripheral nerve regeneration. In the present study we investigated the expression of neuronal nitric oxide synthase (nNOS) and phospholipase C-gamma1 (PLC-gamma1) in regenerating rat laryngeal nerves during the exposure to PEMF after surgical transection and reanastomosis. Axons were found to regenerate into the distal stump nearly twice faster in PEMF-exposed animals than in the control. Consistently, motor function was better recovered in PEMF-treated rats. The expression of nNOS and PLC-gamma1 was highly enhanced in the regenerated nerves.  相似文献   

10.
Intersubunit intramolecular electron transfer (IET) from FMN to heme is essential in the delivery of electrons required for O2 activation in the heme domain and the subsequent nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation that serves as the input state for reduction of FMN by electrons from NADPH and FAD in the reductase domain. To favor formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct murine inducible nitric oxide synthase (iNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of the IET between the FMN and heme domains in this construct was directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single domain heme oxygenase constructs.  相似文献   

11.
Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an important role in vascular functions, including vasorelaxation. We here investigated the pharmacological effect of the natural product syringaresinol on vascular relaxation and eNOS-mediated NO production as well as its underlying biochemical mechanism in endothelial cells. Treatment of aortic rings from wild type, but not eNOS(-/-) mice, with syringaresinol induced endothelium-dependent relaxation, which was abolished by addition of the NOS inhibitor N(G)-monomethyl-L-arginine. Treatment of human endothelial cells and mouse aortic rings with syringaresinol increased NO production, which was correlated with eNOS phosphorylation via the activation of Akt and AMP kinase (AMPK) as well as elevation of intracellular Ca(2+) levels. A phospholipase C (PLC) inhibitor blocked the increases in intracellular Ca(2+) levels, AMPK-dependent eNOS phosphorylation, and NO production, but not Akt activation, in syringaresinol- treated endothelial cells. Syringaresinol-induced AMPK activation was inhibited by co-treatment with PLC inhibitor, Ca(2+) chelator, calmodulin antagonist, and CaMKKβ siRNA. This compound also increased eNOS dimerization, which was inhibited by a PLC inhibitor and a Ca(2+)-chelator. The chemicals that inhibit eNOS phosphorylation and dimerization attenuated vasorelaxation and cGMP production. These results suggest that syringaresinol induces vasorelaxation by enhancing NO production in endothelial cells via two distinct mechanisms, phosphatidylinositol 3-kinase/Akt- and PLC/Ca(2+)/CaMKKβ-dependent eNOS phosphorylation and Ca(2+)-dependent eNOS dimerization.  相似文献   

12.
Nitric oxide (NO), a biological mediator involved in vascular physiology, was sensed electrochemically using a microelectrode array. Angiogenin was shown to trigger nitric oxide synthase (NOS) activity in human umbilical vein endothelial cells and embryonic stem cell derived endothelial cells independently from its RNase activity.  相似文献   

13.
Russian Chemical Bulletin - The effect of citrulline and ammonium chloride on the nitric oxide formation by peritoneal macrophages and liver tissue cells was studied using ESR spectroscopy. In ex...  相似文献   

14.
15.
Thalidomide has been found to exhibit weak nitric oxide synthase (NOS)-inhibitory activity. Structural development studies of thalidomide showed that some N-2,6-dimethylphenylhomophthalimide analogs possess NOS-inhibiting activity.  相似文献   

16.
Cholesterol-rich diet impairs endothelial NO synthase (eNOS) and enhances inducible NOS (iNOS) expression. In this study, we investigated effects of cholesterol on iNOS expression in high-fat-fed rat models, HepG2 and RAW264.7 cells. The high-fat diet increased the plasma total cholesterol level 6-7 fold and low-density lipoprotein cholesterol level (LDL-C) approximately 70 fold and slightly increased the level of lipid peroxidation as determined by thiobarbituric acid-reactive substance assay. The high-fat diet also increased plasma nitric oxide (NO) concentrations up to 5 fold, and induced iNOS mRNA expression in liver. The contractile responses of the endothelium-denuded thoracic aortic rings to phenylephrine were significantly damaged in high-fat-fed rats when assessed by organ chamber study. Treatment with estrogen for 4 days failed to reduce iNOS expressions as well as aortic contractility, although it improved lipid profiles. In cultured HepG2 or murine macrophage RAW264.7 cells, 3 days treatment with either 25-hydroxycholesterol or 7-ketocholesterol induced iNOS mRNA expression, as determined by RT-PCR. Our data suggested that the chronic exposure of hepatocytes and macrophage cells to high concentration of cholesterol or oxysterols may induce iNOS expression and subsequent synthesis of NO, which may be important in the pathogenesis of atherosclerosis.  相似文献   

17.
Nitric oxide synthase (NOS) has been divided into two major sub-enzymes, i.e. inducible NOS (iNOS) and constitutive NOS (cNOS). Although nitric oxide (NO) plays an important role as host defense mediator, excessive production of NO by iNOS has been involved in the pathology of many inflammatory diseases. Recently, we reported that the 2-imino-1,3-oxazolidine (1a) weakly inhibits iNOS and that introduction of an alkyl moiety on the oxazolidine ring of 1a enhances the inhibitory activity and selectivity for iNOS. In our search for better iNOS inhibitors, we focused our efforts on the 2-aminothiazole scaffold 3 as it possesses a ring similar to that of 1a. In this study, we evaluated the inhibitory activity of a series of 2-aminothiazole derivatives against both iNOS and neuronal NOS (nNOS). Our results show that introduction of appropriately-sized substituents at the 4- and 5-position of the 2-aminothiazole ring improves the inhibitory activity and selectivity for iNOS. We also found that the selectivity of 5a [5-(1-methyl)ethyl-4-methylthiazol-2-ylamine] and 5b [5-(1,1-dimethyl)ethyl-4-methylthiazol-2-ylamine] for iNOS was similar to that of oxazolidine derivative 1b (4-methyl-5-propyl-2-imino-1,3-oxazolidine) and much higher than that of L-NAME. However, we could not enhance the inhibitory activity against iNOS by introducing an alkyl substituent into the 2-aminothiazole ring as we could in the case of oxazolidine one. On the other hand, introduction of bulky or hydrophilic substituent at any position of the 2-aminothiazole ring remarkably decreased or even abolished the inhibitory activity against NOS.  相似文献   

18.
Analogues of yakuchinones were synthesized as inhibitors of nitric oxide production in lipopolysaccharide-activated macrophage cell line, RAW 264.7 cells. We prepared stronger inhibitors than the original natural molecules, yakuchinones A and B reported from Alpinia oxyphylla. From the limited structural activity relation study of analogues, we concluded that the optimal length of linker between two aryl groups and the presence of enone moiety in the linker were identified as essential for the activity. The IC50 value of the most potent structure was 0.92 microM. The active analogues suppressed the expression of inducible nitric oxide synthase protein and mRNA.  相似文献   

19.
A quantum mechanical/molecular mechanical (QM/MM) study of the formation of the elusive active species Compound I (Cpd I) of nitric oxide synthase (NOS) from the oxyferrous intermediate shows that two protons have to be provided to produce a reaction that is reasonably exothermic and that leads to the appearance of a radical on the tetrahydrobiopterin cofactor. Molecular dynamics and energy considerations show that a possible source of proton is the water H-bond chain formed from the surface to the active site, but that a water molecule by itself cannot be the source of the proton; an H3O+ species that is propagated along the chain is more likely. The QM/MM calculations demonstrate that Cpd I and H2O are formed from the ferric-hydrogen peroxide complex in a unique heterolytic O-O cleavage mechanism. The properties of the so-formed Cpd I are compared with those of the known species of chloroperoxidase, and the geometry and spin densities are found to be compatible. The M?ssbauer parameters are calculated and may serve as experimental probes in attempts to characterize NOS Cpd I.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号