首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
The effect of low (<5 V) electrical potentials on the microhardness of metallic materials has been studied experimentally. It has been revealed that this effect does depend on the sign of the electric field potential. It has been found that the microhardness of aluminum, cobalt, and zinc decreases and the microhardness of zirconium and iron increases when an electrical potential is applied. It has been argued that the degree of microhardness change under an electric field depends on the magnitude of applied potential, the magnitude of the Hall coefficient of a metal, and its physicochemical properties.  相似文献   

2.
The load dependence of the microhardness of polycrystalline aluminum and iron specimens produced by rolling in a nitrogen, helium, or air medium has been investigated. It has been found that nitrogen and helium have different effects on the microhardness of these metals in the low-load range. This difference is associated with the specific features in the intensity of dynamic penetration of nitrogen and helium into the surface layer of aluminum and iron, which depends on the initial defect crystal structure of the metals, as well as on the type of bonding of helium atoms and nitrogen molecules with metal atoms. It has been shown that the effect of the gaseous medium of the rolling on the microhardness manifests itself only in a very thin surface layer of metal specimens, where the microhardness exhibits a size effect, and an increase in the microhardness indentation depth remains unchanged with an increase in the load and does not depend on the gaseous medium of the prerolling of the specimens.  相似文献   

3.
The influence of the laser radiation power density on the changes in the composition and mechanical properties of surface layers of Cu50Ni50 foils has been investigated using X-ray photoelectron spectroscopy, scanning probe microscopy, X-ray diffraction, and microhardness measurements. It has been found that, after laser irradiation, the redistribution of elements occurs in the surface layer with a thickness of ~30 nm on the irradiated side of the foil. It has been revealed that there are microdistortions in the crystal lattice of the alloy, microdeformations of grains, and variations in the microhardness of the irradiated surface. The mechanisms explaining the observed changes in the foils after laser irradiation have been proposed.  相似文献   

4.
The energy of the sorption and diffusion of lithium atoms on the reconstructed (4 × 2) (100) silicon surface in the process of their transport into near-surface layers, as well as inside crystalline silicon, at various lithium concentrations have been investigated within the density functional theory. It has been shown that single lithium atoms easily migrate on the (100) surface and gradually fill the surface states (T3 and L) located in channels between silicon dimers. The diffusion of lithium into near-surface silicon layers is hampered because of high potential barriers of the transition (1.22 eV). The dependences of the binding energy, potential barriers, and diffusion coefficient inside silicon on distances to the nearest lithium atoms have also been examined. It has been shown that an increase in the concentration of lithium to the Li0.5Si composition significantly reduces the transition energy (from 0.90 to 0.36 eV) and strongly increases (by one to three orders of magnitude) the lithium diffusion rate.  相似文献   

5.
The effect of compression plasma flows (CPFs) with energy densities of 22 and 27 J/cm2 on the T15K6 hard-alloy surface with predeposited titanium and zirconium coatings is investigated. It has been ascertained that tungsten nitride (WN) is formed in the surface layers of the systems under study after the action of CPFs in gaseous nitrogen. In the case of the deposition of a zirconium coating, the (Ti, W)C solid solution is alloyed with zirconium. Treatment by CPFs leads to the alloying of the coating and the hard-alloy substrate, generating two types of modified-surface morphology. These types differ in the number of microcraters and pores per unit of surface area. The combined action with energy densities of 22 and 27 J/cm2 on a hard alloy enhances its microhardness by a factor of more than 2.6 and 2.2, respectively.  相似文献   

6.
The influence of the excitation energy of compound fissioning nucleus on the potential deformation energy as a function of the fission and asymmetry coordinates has been investigated. The Fermi distribution of nucleons at a certain temperature is assumed and taken into account in the Strutinsky shell-correction method. It has been found that the structure of the potential energy surface becomes smoother with increasing excitation energy and shell effects disappear at a compound-nuclear temperature of 2.0 to 2.5 MeV.  相似文献   

7.
Surface nitriding of a Ti–6Al–4V alloy by laser melting in a flow of nitrogen gas has been investigated, with the aim of increasing surface hardness and hence improving related properties such as wear and erosion resistance. The effect of the scanning speed, nitrogen dilution, and nitrogen flow rate on microstructure, microhardness, and cracking of the nitrided layers was studied. Optical, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction (XRD) were used to reveal the microstructure and to identify the phases formed. It is shown that smooth, deep, and crack-free nitride layers of a surface hardness ranging between 500 and 800 HV can be obtained by controlling the processing parameters. Cracks are present in the sample processed at slow scanning speed and high laser power. Dilution of the nitrogen gas with argon gas leads to a crack-free nitride layer at the expense of a reduction in surface hardness. Slow scanning speeds lead to the formation of a deep and hard surface layer, and increasing the nitrogen flow rate results in a rough surface with a slight increase in hardness.  相似文献   

8.
It has been shown that the dependence of the width of X-ray diffraction lines of plastically deformed cobalt on the annealing temperature is described by the exponential function. Characteristic temperature regions corresponding to the processes of recovery and recrystallization have been established. It has been shown that the values of the activation energy of recrystallization determined from the experimental data are comparable with the activation energy of the grain-boundary diffusion in metals. The activation energy for the recovery region is considerably lower than the activation energy of migration of nonequilibrium grain boundaries in nanocrystalline metals. The X-ray diffraction data have been confirmed by the investigations of the microstructure and microhardness.  相似文献   

9.
He-HI复合物势能面及微分散射截面的理论研究   总被引:5,自引:1,他引:5       下载免费PDF全文
采用超分子单双迭代(包括非迭代三重激发)耦合簇理论CCSD(T)方法和由键函数3s3p2d1f组成的大基组, 计算得到了基态He-HI复合物相互作用的全程势能面. 该势能面上存在2个势阱, 分别对应于线性He-I-H和He-H-I构型, 势阱深度分别为4.473和2.996meV, He原子到HI分子质心的距离R分别为0.363和0.442nm. 使用Barker, Fisher和Watts提出的BFW势函数拟合计算得到的相互作用能数据, 获得了He原子与HI分子相互作用势的解析表达式. 在 关键词: He-HI复合物 势能面 微分散射截面  相似文献   

10.
The scavenging action of zingerone, a phenolic anti‐oxidant, toward the hydroxyl radical has been studied employing density functional theory. All the relevant potential energy surface extrema were located by optimizing geometries of the reactant complexes, transition states, and product complexes in gas phase. Solvent effect of aqueous media was treated by performing single point energy calculations using the polarizable continuum model. It has been shown how following certain steps of hydrogen abstraction and addition reactions and using a few OH radicals along with zingerone or its degradation products, two other anti‐oxidants, namely vanillin and ferulic acid can be formed. The mechanism of anti‐oxidant action of zingerone through single electron transfer has also been studied. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Using first-principles calculations,we systematically study the potential energy surfaces and dissociation processes of the hydrogen molecule on the Mg(0001) surface.It is found that during the dissociative adsorption process with the minimum energy barrier,the hydrogen molecule first orients perpendicularly,and then rotates tobecome parallel to the surface.It is also found that the orientation of the hydrogen molecule in the transition state is neither perpendicular nor parallel to the surface.Most importantly,we find that the rotation causes a reduction of the calculated dissociation energy barrier for the hydrogen molecule.The underlying electronic mechanism for the rotation of the hydrogen molecule is also discussed in the paper.  相似文献   

12.
The morphology of the (0001) van der Waals surfaces of the layered single crystal In1.03Se0.97, which were prepared using different techniques, has been investigated by scanning probe microscopy methods. It has been assumed that the van der Waals surface prepared with the use of an adhesive tape oxidizes in air due to the chemisorption of acid agents on dangling bonds of the metal and selenium. An analysis of the current-voltage characteristics of the tunneling current has shown that the composition of natural oxides represents a mixture of phases of the In2O3 oxide and wide-band-gap selenium oxides. In the InSe surface prepared by cleavage with subsequent exposure in air for approximately 2 min, the scanning with a tunneling microscope has revealed a surface ordering in the form of a corrugation of a complex profile with a fine structure. The last fact reflects the charge density redistribution after the chemisorption of gas molecules from air on this surface and its relaxation to the state with a minimum energy. Atoms of the basal plane are observed on the InSe(0001) van der Waals surface prepared by cleavage in an oxygen-free medium. The surface corrugation is absent. Point defects cause a disturbance of the periodic potential of the single crystal, which extends over a distance equal to four lattice spacings and appears as a shadowing. A technique has been proposed for producing In2O3 oxide nanostructures on the surface of the single crystal of the layered semiconductor InSe with the use of an atomic-force microscope probe as a nanoindenter. The ability of the probe to operate in gaseous and liquid media significantly extends the capabilities of the method.  相似文献   

13.
The potential energy curves of dissociation of molecular oxygen chemisorbed in four important sites of a graphitic cycle have been investigated by the CNDO/2 method. It is shown that the calculated potential energy curve exhibits in all examined cases an energy barrier. Similarly, dissociation of an oxygen molecule chemisorbed on a surface of graphite interacting with another chemisorbed oxygen atom or molecule has been examined. On the ground of these data the probability of formation of atomic oxygen in dependence on the surface coverage is being discussed.  相似文献   

14.
用卢瑟福背散射技术研究了Ni基体中掺B对离子溅射产额的影响。实验结果发现掺B后Ni原子的溅射产额Y比未掺B的纯Ni样品有明显减少。虽然这种溅射产额差值ΔY与Painter和Averill(P-A)理论模型分析结果定性符合,但实验产额减小值却大于P-A模型的预言。为解释实验结果,注意到溅射靶点表面形貌对减小或增大溅射产额的明显作用,认为实际的产额减小很可能是由于结合能和表面形貌等因素的协同效应。 关键词:  相似文献   

15.
The energy, angular distributions and trajectories of particles scattered on surfaces of Ni(100) and Cu(100), with both ideal and damaged, and semi-infinite and isolated atomic steps, have been calculated. It has been shown that from the correlation between the experimental and calculated energy distributions of the scattered particles, one may determine the spatial extension of the isolated atomic steps and the distance between them on the single crystal surface damaged by ion bombardment. The energy and angular distributions of ions dechanneled from semi-infinite steps on the GaP(100) surface have been presented. It has been shown that the dechanneling ions form the characteristic peaks in the angular and energy distributions of the scattered particles.  相似文献   

16.
Using a set of physicochemical methods (XPS, analytical electron microscopy, the adsorption of acid–base indicators, and measuring microhardness), the effectiveness of nonthermal action produced by nanosecond high voltage pulses for targeted changes in the phase (functional chemical) composition and technological properties of rock-forming minerals of kimberlites and diamonds is shown. According to data obtained via XPS and SEM-EDX analyses, pulse energy actions damage the surface microstructure of dielectric minerals with the subsequent formation of traces of surface breakdowns and microcracks, softening rockforming minerals, and reducing their microhardness by 40–66% overall. The following changes in the functional chemical composition of a geomaterial surface are established through the adsorption of acid–base indicators: mutual transformations of the Brønsted base, Lewis base, and Brønsted acid sites on a calcite surface under the action of an electromagnetic pulse and the hydroxylation and/or formation of carbonyl groups on a diamond surface, doubling the diamond electrokinetic potential in the negative range.  相似文献   

17.
Wenzhen Lai  Daiqian Xie   《Surface science》2004,550(1-3):15-20
Vibrational properties of hydrogen on the Rh(1 1 1) surface have been investigated theoretically. The potential energy surface for this system has been calculated within the density functional theory. The potential is found to be very anharmonic. The wave functions and their energies for the hydrogen motion on the potential energy surface (PES) have been calculated and assigned by using discrete variable representation. It was found that the vibrational wave function is localized at hollow site in the ground state for hydrogen on Rh(1 1 1). Higher excited states are of delocalized nature and mixed parallel and perpendicular character. Our results are in good agreement with the observed vibrational spectra of hydrogen on the Rh(1 1 1) surface.  相似文献   

18.
The electrostatic interaction of two spherical macroparticles in a plasma has been considered. Primary attention has been focused on investigating the electrostatic interaction at short distances where polarization effects of the surface charge of finite-size macroparticles begin to play a dominant role. The first part of this study is devoted to the interaction of a point charge with a charged conducting sphere in an equilibrium plasma. It has been shown that the presence of a plasma in the system leads to a decrease in the potential barrier when two like-charged macroparticles approach each other and that this decrease proves to be the most significant in the case where the macroparticle radius is comparable to the Debye screening length. The second part of this study is concerned with the interaction of two conducting spheres in the bispherical system of the coordinates under the assumption that the charges of the conducting spheres are constant and under the assumption that the surface potentials of the spheres are constant. The latter case is closer to the physics of electrostatic interaction of two macroparticles in a plasma medium where the electrostatic potential of their surface is determined by the floating potential of the plasma. It has been demonstrated that the interaction potentials in these two cases are substantially different from each other and that, at constant macroparticle charges, the energy of the electrostatic field is an interaction potential, but, in the case of macroparticles with constant surface potentials, which are independent of the interparticle distance, the energy of the electrostatic field is not an interaction potential. In the latter case, account must be taken of the work done by external sources on the macroparticle potentials to maintain them constant. The form of the interaction potential has been established in this case from the analysis of the interaction force in terms of the Maxwell tension tensor. In the third part of this study, the interaction of two macroparticles has been considered in the spherical system of coordinates and analytical expressions for the interaction potentials have been derived for both the case of constant macroparticle charges and the case of constant surface potentials of the macroparticles.  相似文献   

19.
A study of the laser surface hardening process of two austempered ductile iron grades, with different austempering treatments has been carried out. Hardening was performed with an infrared continuous wave Nd:YAG laser in cylindrical specimens. The microstructure of the laser hardened samples was investigated using an optical microscope, microhardness profiles were measured and surface and radial residual stresses were studied by an X-ray diffractometer. Similar results were achieved for both materials. A coarse martensite with retained austenite structure was found in the treated area, resulting in a wear resistant effective layer of 0.6 mm to 1 mm with a microhardness between 650 HV and 800 HV. Compressive residual stresses have been found at the hardened area being in agreement with the microhardness and microstructural variations observed. The achieved results point out that the laser surface hardening is a suitable method for improving the mechanical properties of austempered ductile irons.  相似文献   

20.
The friction wear of surfaces of 40Cr (40Khr) structural steel and 12Cr18Ni10Ti (12Kh18N10T) stainless steel is investigated. It is established, by comparison of the wear of initially annealed 40Cr steel after hardening by radiation from a CO2 laser to various degrees of surface microhardness and separately after volume heat treatment, that the wear is due to fatigue in the entire range of microhardness, regardless of the dispersive properties of the structures. It is shown that the resistance to wear tends to increase with increase of the microhardness of the bearing surfaces. The dependence of the rate of wear on the surface microhardness is obtained. It is found that the wear process is accompanied by formation of a special structurally stressed state in the Saint-Venant region; this state is characterized by a constant hardness level independently of the preceding state of the material.Translation of Preprint No. 196, Lebedev Institute of Physics, Academy of Sciences, USSR, Moscow (1990).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号