首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have solved numerically the nonlinear partial differential equation that links speed of sound and compression factor subjected to boundary conditions in the gaseous phase. This method has as similar accuracy as other numerical method based on an initial-values numerical integration in the low-density regime, but for higher densities, this new approach is more accurate and less sensitive to errors in both boundary conditions and speed-of-sound. The method was tested by comparing our numerical calculations against a reference equation of state in the fluid region of densities up to the critical density and temperatures between slightly above the critical temperature and four times the critical temperature. We also analysed and estimated uncertainties of derived thermodynamic properties from this method. Finally, the method was applied to argon and ethane experimental data.  相似文献   

3.
This work presents a Generalized Born model for the computation of the electrostatic component of solvation energies which is based on volume integration. An analytic masking function is introduced to remove Coulombic singularities. This approach leads to analytic formulae for the computation of Born radii, which are differentiable to arbitrary order, and computationally straightforward to implement.  相似文献   

4.
Generalized Born (GB) models provide, for many applications, an accurate and computationally facile estimate of the electrostatic contribution to aqueous solvation. The GB models involve two main types of approximations relative to the Poisson equation (PE) theory on which they are based. First, the self-energy contributions of individual atoms are estimated and expressed as "effective Born radii." Next, the atom-pair contributions are estimated by an analytical function f(GB) that depends upon the effective Born radii and interatomic distance of the atom pairs. Here, the relative impacts of these approximations are investigated by calculating "perfect" effective Born radii from PE theory, and enquiring as to how well the atom-pairwise energy terms from a GB model using these perfect radii in the standard f(GB) function duplicate the equivalent terms from PE theory. In tests on several biological macromolecules, the use of these perfect radii greatly increases the accuracy of the atom-pair terms; that is, the standard form of f(GB) performs quite well. The remaining small error has a systematic and a random component. The latter cannot be removed without significantly increasing the complexity of the GB model, but an alternative choice of f(GB) can reduce the systematic part. A molecular dynamics simulation using a perfect-radii GB model compares favorably with simulations using conventional GB, even though the radii remain fixed in the former. These results quantify, for the GB field, the importance of getting the effective Born radii right; indeed, with perfect radii, the GB model gives a very good approximation to the underlying PE theory for a variety of biomacromolecular types and conformations.  相似文献   

5.
Generalized Born (GB) models provide a computationally efficient means of representing the electrostatic effects of solvent and are widely used, especially in molecular dynamics (MD). A class of particularly fast GB models is based on integration over an interior volume approximated as a pairwise union of atom spheres-effectively, the interior is defined by a van der Waals rather than Lee-Richards molecular surface. The approximation is computationally efficient, but if uncorrected, allows for high dielectric (water) regions smaller than a water molecule between atoms, leading to decreased accuracy. Here, an earlier pairwise GB model is extended by a simple analytic correction term that largely alleviates the problem by correctly describing the solvent-excluded volume of each pair of atoms. The correction term introduces a free energy barrier to the separation of non-bonded atoms. This free energy barrier is seen in explicit solvent and Lee-Richards molecular surface implicit solvent calculations, but has been absent from earlier pairwise GB models. When used in MD, the correction term yields protein hydrogen bond length distributions and polypeptide conformational ensembles that are in better agreement with explicit solvent results than earlier pairwise models. The robustness and simplicity of the correction preserves the efficiency of the pairwise GB models while making them a better approximation to reality.  相似文献   

6.
In this study, we have implemented four analytical generalized Born (GB) models and investigated their performance in conjunction with the GROMOS96 force field. The four models include that of Still and co-workers, the HCT model of Cramer, Truhlar, and co-workers, a modified form of the AGB model of Levy and co-workers, and the GBMV2 model of Brooks and co-workers. The models were coded independently and implemented in the GROMOS software package and in TINKER. They were compared in terms of their ability to reproduce the results of Poisson-Boltzmann (PB) calculations and in their performance in the ab initio peptide folding of two peptides, one that forms a beta-hairpin in solution and one that forms an alpha-helix. In agreement with previous work, the GBMV2 model is most successful in reproducing PB results while the other models tend to underestimate the effective Born radii of buried atoms. In contrast, stochastic dynamics simulations on the folding of the two peptides, the C-terminus beta-hairpin of the B1 domain of protein G and the alanine-based alpha-helical peptide 3K(I), suggest that the simpler GB models are more effective in sampling conformational space. Indeed, the Still model used in conjunction with the GROMOS96 force field is able to fold the hairpin peptide to a native-like structure without the benefit of enhanced sampling techniques. This is due in part to the properties of the united-atom GROMOS96 force field which appears to be more flexible, and hence to sample more efficiently, than force fields such as OPLSAA. Our results suggest a general strategy which involves using different combinations of force fields and solvent models in different applications, for example, using GROMOS96 and a simple GB model in sampling and OPLSAA and a more accurate GB model in refinement. The fact that various methods have been implemented in a unified way should facilitate the testing and subsequent use of different methods to evaluate conformational free energies in different applications. Our results also bear on some general issues involved in peptide folding and structure prediction which are addressed in the Discussion.  相似文献   

7.
8.
We have developed a treecode-based O(N log N) algorithm for the generalized Born (GB) implicit solvation model. Our treecode-based GB (tGB) is based on the GBr6 [J. Phys. Chem. B 111, 3055 (2007)], an analytical GB method with a pairwise descreening approximation for the R6 volume integral expression. The algorithm is composed of a cutoff scheme for the effective Born radii calculation, and a treecode implementation of the GB charge-charge pair interactions. Test results demonstrate that the tGB algorithm can reproduce the vdW surface based Poisson solvation energy with an average relative error less than 0.6% while providing an almost linear-scaling calculation for a representative set of 25 proteins with different sizes (from 2815 atoms to 65456 atoms). For a typical system of 10k atoms, the tGB calculation is three times faster than the direct summation as implemented in the original GBr6 model. Thus, our tGB method provides an efficient way for performing implicit solvent GB simulations of larger biomolecular systems at longer time scales.  相似文献   

9.
A simple procedure for deriving electrical double layer equations from electrolyte theories is applied to the Born—Green—Yvon equation. It is shown that when the auto-field effects are not considered in the wall-ion potential, the equation obtained with this procedure leads to gross inconsistencies.  相似文献   

10.
We suggest a new method of constructing LCAO-type perturbation expansions which provide a generalization of the symmetry-adapted perturbation theory to  相似文献   

11.
Summary The reptation model is generalized on the basis of a theory which accounts for hindered defect diffusion along the chain. A basic ingredient of the theory is a waiting time distribution for the hops of elementary defects which store length. Important rheological quantities are found to generally depend on fractional powers of the molecular mass rather than on integer powers as in the conventional reptation picture.Zusammenfassung Ein verallgemeinertes Reptationsmodell wird vorgestellt. Entlang einer Polymerkette berücksichtigt es die gehinderte Difussion von Defekten, die Länge speichern. Dieser Effekt wird beschrieben mittels einer Wartezeitverteilung für die Defektplatzwechselvorgänge. In der Folge findet man für wichtige rheologische Größen Molekulargewichtsabhängigkeiten in Form von Potenzgesetzen mit gebrochenen Exponenten an Stelle der ganzzahligen Exponenten des konventionellen Reptationsmodells.  相似文献   

12.

This paper presents some freeware, shareware, and commercial statistical tools available via the Internet and which could be used in QSAR for deriving models. Programming environments useful in Statistics, newsgroups and FAQs are also introduced due to their interest for the discipline.  相似文献   

13.
This paper presents some freeware, shareware, and commercial statistical tools available via the Internet and which could be used in QSAR for deriving models. Programming environments useful in Statistics, newsgroups and FAQs are also introduced due to their interest for the discipline.  相似文献   

14.
15.
16.
17.
The Generalized Brillouin Theorem Multiconfiguration Method (GBT-MC) of Grein and Chang is extended and applied to the calculation of excited states. Orthogonality constraints to lower states as well as second-order interaction effects of states lying close together have been taken into account. In this way quadratic convergence can be guaranteed. Difficulties with coupling coefficients and Lagrangian multipliers of SCF methods can be circumvented. Test calculations have been performed on valence electron excited states of C, H2O, and CH2O, and on core excited states of Li.  相似文献   

18.
We present a model to calculate the free energies of solvation of small organic compounds as well as large biomolecules. This model is based on a generalized Born (GB) model and a self-consistent charge-density functional theory-based tight-binding (SCC-DFTB) method with the nonelectrostatic contributions to the free energy of solvation modeled in terms of solvent-accessible surface areas (SA). The parametrization of the SCC-DFTB/GBSA model has been based on 60 neutral and six ionic molecules composed of H, C, N, O, and S, and spanning a wide range of chemical groups. Effective atomic radii as parameters have been obtained through Monte Carlo Simulated Annealing optimization in the parameter space to minimize the differences between the calculated and experimental free energies of solvation. The standard error in the free energies of solvation calculated by the final model is 1.11 kcal mol(-1). We also calculated the free energies of solvation for these molecules using a conductor-like screening model (COSMO) in combination with different levels of theory (AM1, SCC-DFTB, and B3LYP/6-31G*) and compared the results with SCC-DFTB/GBSA. To assess the efficiency of our model for large biomolecules, we calculated the free energy of solvation for a HIV protease-inhibitor complex containing 3,204 atoms using the SCC-DFTB/GBSA and the SCC-DFTB/COSMO models, separately. The computed relative free energies of solvation are comparable, while the SCC-DFTB/GBSA model is three to four times more efficient, in terms of computational cost.  相似文献   

19.
We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers.  相似文献   

20.
A generalized Born (GB) model is proposed that approximates the electrostatic part of macromolecular solvation free energy over the entire range of the solvent and solute dielectric constants. The model contains no fitting parameters, and is derived by matching a general form of the GB Green function with the exact Green's function of the Poisson equation for a random charge distribution inside a perfect sphere. The sphere is assumed to be filled uniformly with dielectric medium epsilon(in), and is surrounded by infinite solvent of constant dielectric epsilon(out). This model is as computationally efficient as the conventional GB model based on the widely used functional form due to Still et al. [J. Am. Chem. Soc. 112, 6127 (1990)], but captures the essential physics of the dielectric response for all values of epsilon(in) and epsilon(out). This model is tested against the exact solution on a perfect sphere, and against the numerical Poisson-Boltzmann (PB) treatment on a set of macromolecules representing various structural classes. It shows reasonable agreement with both the exact and the numerical solutions of the PB equation (where available) considered as reference, and is more accurate than the conventional GB model over the entire range of dielectric values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号