首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comprehensive two-dimensional gas chromatography (GC x GC) is based on a coupling of two GC columns of different characteristics by means of a device that allows portions of the effluent from the primary column to be injected onto the second dimension column for an additional separation. The time available for the separation in the second-dimension column is very short. Thus, this separation should be very efficient. The vast majority of GC x GC practitioners use very narrow bore columns for the second dimension. While this approach is justified in principle, if peaks in the second dimension overload this column, its peak capacity is severely reduced. A series of second-dimension columns of varying internal diameters, but similar phase ratios, were used to study these effects. The results indicate that 250 microm columns often provide comparable second dimension peak widths to 100 microm columns, while at the same time being less prone to overloading, indicating that they may often be a better choice than smaller diameter columns in the second dimension of GC x GC systems.  相似文献   

2.
The need for and the emergence of comprehensive two-dimensional liquid chromatographic separations of synthetic polymers are reviewed in this paper. LC×SEC is shown to be a particularly valuable two-dimensional technique in this domain. An improved (symmetrical) configuration based on a single 10-way switching valve is described. The use of LC×SEC to understand and optimize one-dimensional separations is illustrated, as well as the potential of the technique for the separation and characterization of functional polymers and copolymers.  相似文献   

3.
Gradient elution provides significantly higher peak capacity in comparison to the isocratic elution mode, hence it is very useful in online comprehensive two-dimensional liquid chromatography (LC). We compared suitability of five commercial core-shell columns and one monolithic column for fast gradients in the second LC dimension, where the time of separation is strictly limited by the fraction cycle time. In two-dimensional reversed-phase systems with partially correlated retention, the resolution, the peak capacity, and the regularity of coverage of the second-dimension retention space can be improved by appropriate adjusting the gradient time and the gradient range to suit the sample properties. We developed a new strategy for adjusting the gradient mobile phase composition range in the second-dimension, employing the retention data of representative sample standards characterizing the sample properties, which can be calibrated using the reference alkylbenzene series. Optimized second-dimension gradients with single-step or segmented profiles covering two or more fraction ranges, employed for the separation of subsequent fractions from the first-dimension, improve significantly the resolution, the separation time, and the regularity of coverage of the two-dimensional retention plane. The approach was applied to the two-dimensional comprehensive separation of phenolic acids and flavonoid compounds occurring as natural antioxidants.  相似文献   

4.
Summary Using chromatographic analysis and viscometric investigations of polyamic acids, it has been shown that the linear relationship of the logarithm of intrinsic viscosity and the logarithm of molecular weight of flexible-chain macromolecules exhibits a break on passing from the oligomeric to the polymeric range. Simultaneously, the Huggins constant also changes. These changes result from a decrease in the draining of macromolecules with increasing number of statistical segments. In particular, draining affects the hydrodynamic dimensions determining the SEC-behavior of macromolecules. Semi-empirical expressions have been obtained for the Flory constant Φ and the constants in the Mark-Kuhn-Houwink equation as functions of the draining of macromolecules, the number of their statistical segments and the parameter of volume interaction characterizing the thermodynamic strength of solvent. For this purpose the solution of an integral equation for eigen-functions in the Zimm theory found by Tschoegl was applied.  相似文献   

5.
Branching has a strong influence on the processability and properties of polymers. However, the accurate characterization of branched polymers is genuinely difficult. Branched molecules of a certain molecular weight exhibit the same hydrodynamic volumes as linear molecules of substantially lower weights. Therefore, separation by size-exclusion chromatography (SEC), will result in the co-elution of molecules with different molecular weights and branching characteristics. Chromatographic separation of the polymer molecules in sub-microm channels, known as molecular-topology fractionation (MTF), may provide a better separation based on topological differences among sample molecules. MTF elution volumes depend on both the topology and molar mass. Therefore co-elution of branched molecules with linear molecules of lower molar mass may also occur in this separation. Because SEC and MTF exhibit significantly different selectivity, the best and clearest separations can be achieved by combining the two techniques in a comprehensive two-dimensional (MTFxSEC) separation system. In this work such a system has been used to demonstrate branching-selective separations of star branched polymers and of randomly long-chain-branched polymers. Star-shaped polymers were separated from linear polymers above a column-dependent molecular weight or size.  相似文献   

6.
Band broadening in size-exclusion chromatography (SEC) has an adverse effect upon calculated molecular mass averages, distributions, and dilute solution data generated using single- and multi-detector systems. In the past, the longitudinal diffusion contribution to band broadening in SEC has been considered negligible. This assumption has been investigated by using a stop-flow methodology (SF-SEC) that maximizes the potential for longitudinal diffusion while minimizing that for mass transfer. Under the given experimental conditions, the effects of B-term band broadening were manifest only below 30 KDa, irrespective of chemical functionality or molecular mass polydispersity. This type of broadening was found to be flow rate-independent for a representative high molecular mass polymer.  相似文献   

7.
Simulations of the distribution coefficients of linear polymers and regular combs with various spacings between the arms have been performed. The distribution coefficients were plotted as a function of the number of segments in order to compare the size exclusion chromatography (SEC)-elution behavior of combs relative to linear molecules. By comparing the simulated SEC-calibration curves it is possible to predict the elution behavior of comb-shaped polymers relative to linear ones. In order to compare the results obtained by computer simulations with experimental data, a variety of comb-shaped polymers varying in side chain length, spacing between the side chains and molecular weights of the backbone were analyzed by SEC with light-scattering detection. It was found that the computer simulations could predict the molecular weights of linear molecules having the same retention volume with an accuracy of about 10%, i.e. the error in the molecular weight obtained by calculating the molecular weight of the comb-polymer based on a calibration curve constructed using linear standards and the results of the computer simulations are of the same magnitude as the experimental error of absolute molecular weight determination.  相似文献   

8.
Having nearly exhausted the possibilities for generating peak capacity through improvements in column technology, chromatographers are increasingly looking to alternative ways of maximising chromatographic separation. In recent years there has been increasing activity in the field of comprehensive multidimensional separations to meet analysis demands. Comprehensive two-dimensional liquid chromatography (LC×LC) approaches offer high peak capacity which leads to significantly improved analytical performance over single-column liquid chromatography. There are several closely related avenues available for achieving an LC×LC separation and this review pays special attention to the different valve-based interfaces that have been used to comprehensively couple the first and second dimension columns in LC×LC systems. A brief discussion of column choices for selected applications and the conditions employed is also presented.  相似文献   

9.
This paper presents a modeling-based approach to the prediction of the molar mass distribution of the various species in a star-branched polycondensation mixture. The interpretation of experimental SEC data of the mixture of linear, cyclic and star-branched molecules is not straightforward, because of the different sizes of those molecules (having the same molecular mass). Therefore we have opted to use SEC analysis with only a concentration detector and fit the experimental data to the theoretical mass distribution, corrected for the volume of the various molecules. This allows the relative fraction and the distribution of the various species in the mixture (linear, cyclic and star-branched) to be determined. To demonstrate this, the six-arm star-branched poly-epsilon-caprolactam based on the six-functional coupling molecule, hexa(6-caproic acid) melamine has been analyzed. Five polymer mixtures with different initial concentration of coupling molecule have been synthesized. As the initial concentration of coupling molecule increased, we found that the weight fraction of star-branched molecules increased, while the weight fraction of linear and cyclic molecules decreased. We also found that the weight-average molar mass and the arm length decrease as the initial fraction of the coupling molecule increases.  相似文献   

10.
Summary In the determination of ephedrine using reversed-phase, ion-pair liquid chromatography, a chromatographically pure sample was observed to give three peaks under certain mobile phase conditions. The mobile phases which produced maximum peak splitting were determined for ephedrine and a number of other sympathomimetic drugs.A proposal that peak splitting was the result of the composite interplay of two discrete chromatographic mechanisms, was investigated. The results of analysis by GC/MS confirmed that each peak was due to ephedrine, however, only one of the three split peaks was found to contain ion pairs. It is postulated that peak splitting is a physical phenomenon on reversed-phase columns and the separation of these drugs by ion-pair HPLC is based on a mixed rather than a single mechanism.This study has also shown that errors can arise in ion-pair HPLC when multiple peaks are assumed to indicate heterogeneity. Interconvertible species of the same solute can give rise to these peaks.  相似文献   

11.
Peak splitting of high molecular weight polycyclic aromatic compounds originating from the microwave plasma of an atomic emission detector (AED) coupled to a GC has been described and evaluated. The influence of the solute structure, solute concentration, and physical conditions in the AED (such as detector temperature, make-up gas flow, concentration of reagent gases and distance of column end from the plasma) have been studied. An explanation is presented for peak splitting, which is based on an insufficient solute decomposition and solute mass flow in the discharge tube. Modification of the instrument by introduction of additional make-up gas applied through the transfer line has been shown to improve peak shape and solute response.  相似文献   

12.
A multiplexed dual-secondary column comprehensive two-dimensional gas chromatography approach (GC × 2GC) designed for complex sample analysis is introduced. The approach splits the first-dimension column effluent into two second-dimension columns with different stationary phases, and recombines the two streams into one detector post-separation. The approach produces two single two-dimensional chromatograms for each injection. Careful manipulation of thermal modulator timing parameters combined with a novel contra-directional modulation regime facilitates this approach. A selection of 34 laboratory reference compounds containing n-alkanes, alcohols, aromatic hydrocarbons, ketones, esters and halogenated hydrocarbons were analysed to demonstrate the approach. The dual two-dimensional chromatogram from this single detector system provides complementary information due to the unique selectivity of the three separation columns. The results of this proof-of-principle investigation provide significant impetus for further development of GC × 2GC–MS methodology.  相似文献   

13.
In the case of a non-focusing modulator for comprehensive two-dimensional gas chromatography (GC × GC), the systematic distortions introduced when the modulator loads the second-dimension column give rise to a characteristic peak shape. Depending on the operating conditions this systematic distortion can be the dominant component of the second-dimension elution profiles in the GC × GC peak. The present investigation involved a systematic investigation of peak shape in pulsed-flow modulation (PFM)–GC × GC. It is shown that low flow ratio can lead to significant peak skewing and increasing the flow ratio reduces the magnitude of peak skewing. Validation of the peak shape model is made by comparison with experimental data. The residuals from the fitting process (normalised to the maximum detector response) vary between –1.5% and +2.6% for an isothermal model and between –1.0% and +3.0% for a temperature-programmed model.  相似文献   

14.
The watershed algorithm is the most common method used for peak detection and integration in two-dimensional chromatography. However, the retention time variability in the second dimension may render the algorithm to fail. A study calculating the probabilities of failure of the watershed algorithm was performed. The main objective was to calculate the maximum second-dimension retention time variability, Δ2tR,crit, above which the algorithm fails. Several models to calculate Δ2tR,crit were developed and evaluated: (a) exact model; (b) simplified model and (c) simple-modified model. Model (c) gave the best performance and allowed to deduce an analytical expression for the probability of failure of the watershed algorithm as a function of experimental Δ2tR, modulation time and peak width in the first and second dimensions. It could be demonstrated that the probability of failure of the watershed algorithm under normal conditions in GC × GC is around 15–20%. Small changes of Δ2tR, modulation time and/or peak width in the first and second dimension could induce subtle changes in the probability of failure of the watershed algorithm. Theoretical equations were verified with experimental results from a diesel sample injected in GC × GC and were found to be in good agreement with the experiments.  相似文献   

15.
Li X  Carr PW 《Journal of chromatography. A》2011,1218(16):2214-2221
Comprehensive two-dimensional liquid chromatography (LC×LC) has received a great deal of attention during the past few years because of its extraordinary resolving power. The biggest advantage of this technique is that very high peak capacities can be generated in a relatively short time. Numerous approaches to maximize the peak capacity in LC×LC have been employed. In this work we investigate the impact of the first dimension mobile phase on selectivity. LC×LC has several potential advantages over one-dimensional LC (1DLC) in that unconventional solvents, at least in reversed-phase LC, can be used. For example, solvents which strongly adsorb in the UV in the first dimension are not problematic in LC×LC. This so because the UV detector is placed after the second dimensional column, as pulses of the first dimension eluent arrive at the second dimensional column, they elute well before the solutes of interest and therefore do not interfere at all with detection of solute peaks. So far, the most widely used solvents in reversed-phase 1DLC are methanol and acetonitrile. However, the "UV advantage" of 2DLC allows us to employ UV active solvents, such as acetone. We compare their differential selectivities to that of acetonitrile for the separation of 23 indole acetic acids of interest in plant biology. We also apply them to the separation of a maize seed extract, a very complex sample. In both sample sets, mobile phase composition can be an important parameter to increase the orthogonality of the two dimensions and thus, to increase the effective peak capacity of LC×LC.  相似文献   

16.
We explore the use of preparative size-exclusion chromatography (SEC) and high-performance liquid chromatography (HPLC) to purify quantum dots (QDs) after surface modification. In one example, in which Bio-Beads (S-X1) were used as the packing material for the preparative SEC column, CdSe QDs treated with a functional coumarin dye could be separated from the excess free dye by using tetrahydrofuran (THF) as the mobile phase. This column was unable to separate polymer-coated QDs from free polymer (M ∼ 8000) because of the relatively low cutoff mass of the column. Here a preparative HPLC column packed with TOYOPEARL gel allowed the effective separation of polymer-bound QDs from the excess free polymer by using N-methyl-2-pyrrolidinone (NMP) as the mobile phase. When other solvents such as absolute ethanol, acetonitrile, THF, and THF–triethylamine mixtures were used as the eluent, QDs stuck to the column. While NMP was an effective medium to remove excess free polymer from the QDs, it was difficult to transfer the purified QDs to more volatile solvents and maintain colloidal stability.  相似文献   

17.
A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size.  相似文献   

18.
Unmodified silica gel size-exclusion columns were used in an on-line combination with light-scattering detection for a size characterization of dextrans. The influence of electrostatic interactions on analyte retention was briefly investigated. Size-exclusion chromatography was also used for evaluation of the fluorescence labeling procedure for dextrans with 8-aminonaphthalene-1,3,6-trisulfonic acid. The derivatives obtained through this procedure were used for electrophoretic measurements with laser-induced fluorescence detection. A comparison between the size-exclusion data and capillary electrophoresis indicates that the effectiveness of fluorescent labeling decreases with molecular mass of the dextran analytes.  相似文献   

19.
The experimental effects of sampling time on the resolving power of on-line LC×LC were investigated. The first dimension gradient time ((1)t(g)) and sampling time (t(s)) were systematically varied ((1)t(g)=5, 12, 24 and 49 min; t(s)=6, 12, 21 and 40s). The resolving power of on-line LC×LC was evaluated in terms of two metrics namely the numbers of observed peaks and the effective 2D peak capacities obtained in separations of extracts of maize seeds. The maximum effective peak capacity and number of observed peaks of LC×LC were achieved at sampling times between 12 and 21s, at all first dimension gradient times. In addition, both metrics showed that the "crossover" time at which fully optimized 1DLC and LC×LC have equal resolving power varied somewhat with sampling time but is only about 5 min for sampling times of 12 and 21s. The longest crossover time was obtained when the sampling time was 6s. Furthermore, increasing the first dimension gradient time gave large improvements in the resolving power of LC×LC relative to 1DLC. Finally, comparisons of the corrected and effective 2D peak capacities as well as the number of peaks observed showed that the impact of the coverage factor is quite significant.  相似文献   

20.
With the increasing popularity of evaporative interfaces, detection using Fourier Transform Infrared (FTIR) spectrometry in the mid-infrared region is becoming more important in size-exclusion chromatography (SEC). FTIR spectrometry is a powerful, and potentially very widely applicable, method for obtaining chemical functional group information for each molecular size fraction. Quantitative evaluation of polymer composition across the SEC chromatogram can provide more accurate characterization of heterogeneous polymer samples for problem solving and for material specification. The evaporative interface removes the SEC mobile phase at the exit of the column and deposits the eluting polymer as a continuous film stripe or as a series of discrete films on infrared transparent substrates. Initially this detection approach was used only for qualitative analysis. More recently, it is being used quantitatively. Previously we demonstrated that the quality of the film generated by the evaporative interface was critical to determining the suitability of the resulting FTIR spectra for quantitative analysis. In a continuation of this work, the objective of this paper is to develop a procedure for obtaining valid quantitative results for polymer blends with the interface. Experimental topics include improving the quality of polymer films by post-SEC treatments, off-line FTIR calibrating using other means to obtain high quality polymer films, and utilizing in-line SEC detectors in calibration. Interpretation aspects focus upon peak fitting of FTIR spectra, linear regression, partial least squares, and data pre-processing. PLS prediction with internal calibration using the second derivative of solvent-annealed film spectra was found to provide the best compromise between processing time, accuracy and precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号