首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elemental tellurium inserts, under mild conditions, between C-I bond of iodoacetamide to afford bis(acetamido)tellurium(IV) diiodide (NH2COCH2)2TeI2, 1. Heating of N-bromomethylphthalimide with activated tellurium powder however, resulted in the formation of bis(phthalimido)methane, 2, instead of the expected product bis(phthalimidomethyl)tellurium(IV) dibromide. The IR spectrum of 1 is indicative of intramolecular Te?OC interaction which is also substantiated by its single-crystal structure. The compound with planar small-bite chelating organic ligands acquires butterfly shape that imparts almost perfect C2v molecular symmetry but unlike other organotellurium(IV) iodides, the solid state structure of 1 is devoid of any intermolecular Te?I or I?I secondary interactions owing to the presence of intramolecular Te?O secondary bonds as well as intermolecular N-H?O, N-H?I and C-H?I hydrogen bonds. Bis(4-methylbenzoylmethyl)telluride (4-MeC6H4COCH2)2Te, 3b, prepared by the reduction of the corresponding dibromide, is the first structurally characterized acyclic dialkyltelluride and interestingly, does not involve intramolecular Te?OC interaction invariably present in the parent dihalides (4-YC6H4COCH2)2TeX2 (Y = H, X = I 4a; Y = H, X = Br 5a; Y = MeO, X = Br 5c). Weak intermolecular Te?Te and C-H?O hydrogen bonds appear to be the non covalent intermolecular associative forces that dominate its crystal packing in the solid state of this Te(II) derivative. The dialkyltellurides (4-YC6H4COCH2)2Te, (Y = H, 3a, Me, 3b) undergo oxidation in presence of (SCN)2 to give the corresponding bis(isothiocyanato)tellurium(IV) derivatives and form 2:1 adducts with Pt(II) and Pd(II) chlorides.  相似文献   

2.
Tellurium(IV) complexes (R4N)2[TeCl6] (T6), (R4N)[TeCl5] (T5), and (R4N)[TeCl4OH] (T4), where (R4N)+ is tetrabutyl, tetraoctyl, and trialkyl benzyl ammonium cations, were synthesized. Tellurium distribution between aqueous HCl solutions and trialkyl benzyl ammonium chloride solution in caprylic acid was studied. The 125Te NMR spectra of aqueous HCl solutions of tellurium have a single averaged peak, whose chemical shift (CS) depends on the acid concentration. 125Te NMR spectroscopy has shown that the T4 complex in nonaqueous solutions is kinetically inert and the ligand exchange with the T6 and T5 complexes is retarded. In contrast, the T5 and T6 complexes, when simultaneously present in nonaqueous solutions, rapidly exchange ligands. 125Te NMR, IR, Raman, and UV spectroscopic studies have shown that under standard conditions, the reaction (Bu4N)[TeCl5]+Bu4NCl = (Bu4N)2[TeCl6] G0 = -19.1(1 ± 0.3) kJ/mol and H0 = -6.5(1 ± 0.2) kJ/mol) takes place in methylene chloride solution. The symmetry groups of the synthesized complexes in the solid state and CSs for tellurium solutions (0.2 gatom/liter Te) in methylene chloride were determined: Oh and –58 ppm for T6; C4v and +75 ppm for T5; and C3v and +54 ppm for T4 (CS = 0 for a 0.2 mol/liter TeO2 solution in 11.4 mol/liter HCl).  相似文献   

3.
Zusammenfassung 1. Beim Lösen und Aufschließen sind im allgemeinen keine Verluste an Tellur zu befürchten; allerdings sollen Schmelzaufschlüsse nicht in Metalltiegeln durchgeführt werden, da ein Teil des Tellurs im Tiegel zurückgehalten werden kann.Nur beim trockenen Veraschen an der Luft und beim Abrauchen von Ammoniumsalzen treten hohe Verluste auf. 2. Die Abtrennung von Tellurspuren durch Fällen mit H3PO2-Lösung ist nicht ganz vollständig; bei Konzentrationen unter etwa 1 g Te/ml sind die Verluste nicht mehr zu vernachlässigen.Zum Anreichern durch Mitfällung sind vor allem Eisen(III)-hydroxid, elementares Arsen und Selen zu empfehlen.Tellur (IV) kann mit zahlreichen Reagentien und organischen Lösungsmitteln aus wäßrigen Lösungen ausgeschüttelt werden. Die Verteilungskoeffizienten nehmen jedoch in der Regel bei sehr kleinen Tellur-Konzentrationen ab. Besonders günstig sind Systeme mit Jodid- und Tetraphenylphosphoniumzugaben.Versuche mit Ionenaustauschern verliefen bei sehr kleinen Tellur-Konzentrationen sämtlich unbefriedigend; entweder war die Abtrennung aus Lösungen oder die Elution von der Säule unvollständig. 3. Die photometrischen Bestimmungsmethoden sind z.T. empfindlich, aber ziemlich störanfällig.Die polarographische Bestimmung kann in verschiedenen Grundlösungen durchgeführt werden; mit dem klassischen Polarographen werden im allgemeinen Empfindlichkeiten von etwa 1 g Te(IV)/ml erreicht, mit moderneren Geräten sollten wesentlich empfindlichere Bestimmungen möglich sein.Die Bestimmung durch Atomabsorption ist etwas weniger empfindlich, aber sehr selektiv und wenig gestört.Als zur Zeit empfindlichste Bestimmungsmethode ist die Aktivierungsanalyse anzusehen; etwas unempfindlicher ist die spektrographische Methode. Die Flammenphotometrie sei nur erwähnt [25].
Chemical behaviour and determination of small amounts of tellurium
1. Normally, there will be no losses of tellurium during dissolution and decomposition steps. Decompositions should not be performed in metallic crucibles, as tellurium will be retained partly within the crucible. Dry ashing in air and sublimation of ammonium salts cause severe losses of tellurium. 2.Separation of tellurium by precipitation with H3PO2 solution is not quantitative; losses cannot be neglected at concentrations <1 g Te/ml.Enrichment of tellurium by coprecipitation can be obtained preferably with iron hydroxide, elemental arsenium, and selenium.Tellurium(IV) can be extracted from aqueous solutions by many different organic solvents, but distribution coefficients decrease with decreasing tellurium concentration. Systems containing iodide and tetraphenylphosphonium ions are preferable.No separation using ion-exchangers have been found satisfactory at low tellurium concentrations. Either separation from solution or elution from the exchanger were not quantitative. 3.Several photometric determination methods are sensitive, but rather strongly influenced by interferences. Polarographic determination can be performed in different basic solutions. Classical polarography gives sensitivities of ca. 1 g Te(IV)/ml, but modern equipment should enable the determination of much lower concentrations.Atomic absorption is not so sensitive, but very selective and free from interferences.At present, the most sensitive determination of tellurium is by neutron activation; optical spectrography is less sensitive. Flame photometry shall be mentioned only [25].


Diss. Mainz 1967 und Diplomarbeit Mainz 1965.  相似文献   

4.
α-Bromo-2-acetylfuran adds oxidatively to elemental tellurium and aryltellurium(II) bromide at ambient temperature to afford (2-furoylmethyl)tellurium(IV) dibromides, (FuCOCH2)2TeBr2 (1b) and Ar(FuCOCH2)TeBr2 (Fu = 2-C4H3O; Ar = 1-C10H7, 2b; 2,4,6-Me3C6H2, 3b). The iodo analogues 1c-3c can be obtained by metathesis of the bromides with an alkali iodide. Condensation reactions of the parent methyl ketone with Te(IV) chlorides results in the corresponding chloro analogues, (FuCOCH2)2TeCl2 (1a) and Ar(FuCOCH2)TeCl2 (2a, 3a and Ar = 4-MeOC6H4 (4a)). These diorganotellurium dihalides are reduced with aqueous bisulfite to diorganotellurides 1-3, which can be oxidized readily with dihalogens to the desired diorganotellurium(IV) dihalides. The tellurated furan derivative, bis(2-furyl)tellurium(II), Fu2Te (5), obtained by detelluration of bis(2-furyl)ditelluride with electrolytic copper, gives crystalline bis(2-furyl)tellurium(IV) dichloride (5a) upon chlorination. Crystal structures of Te(IV) compounds 1a, 1b, 2a-4a, and the telluride 3 together with its thiophene analogue (2,4,6-Me3C6H2)((2-C4H3S)COCH2)Te, 6 have been studied. Among the Te(IV) compounds, the functionalized organic moiety, FuCOCH2-, behaves as a (C, O) chelating ligand, resulting in a intramolecular 1,4-Te?O secondary bonding interaction. Such an interaction is absent in Te(II) compounds 3 and 6, though they differ in the conformation adopted by the organic ligand. The chalcogen atoms in the heteroaroyl moiety are trans in 3 but cis in 6 which also possesses intermolecular Te?O interaction in its lattice.  相似文献   

5.
Summary A complexometric method is proposed for the determination of small amounts of tellurium (50–350g). It is based on the reaction between Te(IV) and diethyldithiocarbamic acid (DDTC). The compound of the composition Te(DDTC)4 obtained is extracted with CCl4 at pH 8.7–8.8. The yellow organic extract is shaken with copper(II)-ammonia solution, ph 11. The organic phase, containing Cu(DDTC)2 is then shaken with silver-ammonia solution. The Cu(II)-ions pass into the aqueous phase where they are titrated with 0.002M EDTA, using glycinethymol blue as indicator. Selenium(IV) does not interfere.
Zusammenfassung Die Reaktion zwischen Te(IV) und Diäthyldithiocarbaminsäure (DDTC) wurde zur komplexometrischen Bestimmung kleiner Mengen Tellur (50 bis 350g benützt. Te(DDTC)4 wird mit CCl4 extrahiert (pH 8,7 bis 8,8) und der gelb gefärbte organische Extrakt mit ammoniakalischer Cu(II)-Lösung bei ph11 ausgeschüttelt. Dabei findet ein Austausch von Te(IV) gegen Cu(II) statt. Die Cu(II)-Ionen der organischen Phase werden mit ammoniakalischer Ag(I)-Lösung umgesetzt und gehen in die wäßrige Phase über, wo sie mit 0,002-m ÄDTA-Lösung gegen Glycinthymolblau titriert werden. Selen(IV) stört nicht.

Résumé On propose une méthode complexométrique pour le dosage de petites quantités de tellure (50-350g). Elle est fondée sur la réaction entre Te-IV et l'acide diéthyldithiocarbamique (DDTC). On extrait par CCl4 á pH 8,7–8,8 le produit obtenu, de composition Te(DDTC)4. On agite l'extrait organique jaune avec une solution ammoniacale de cuivre-II. Les ions cuivriques passent dans la phase aqueuse oú ils sont titrés par l'EDTA 0,002M, avec le bleu de glycinethymol comme indicateur. Le sélénium-IV n'interfére pas.
  相似文献   

6.
The reduction of Te(IV) at tungsten electrodes in basic and neutral KCl?AlCl3 melts has been studied in the temperature range from 300 to 400°C using cyclic voltammetry and differential pulse polarography. In basic melts Te(IV), present as TeCl62? and TeCl5?, is reduced to soluble Te(II) species, which can be further reduced to elementary tellurium insoluble in tungsten. The divalent species are stabilized by increasing the temperature. From the pCl? dependence of the reduction process, Te(II) in basic melts is suggested to be present as TeCl3? and TeCl2. In neutral melts a third oxidation state (possibly monovalent tellurium) is formed when Te(II) is reduced.  相似文献   

7.
Te for two : Supported by pyridine‐ or carbene‐based ligands, tellurium‐centered dications are prepared in high yield and include a dicationic tellurium analogue of the recently synthesized “carbodicarbene”. The key to accessing these compounds is the isolation of a base‐stabilized form of TeOTf2 (see structure), a new highly electrophilic reagent for tellurium chemistry.

  相似文献   


8.
9.
Crystal Structure of Cesiumtetrafluorooxotellurate(IV) Cs2TeOF4 Solid state reaction of cesium fluoride, cesium pentafluorotellurate(IV), and tellurium dioxide in the molar ratio 3 : 1 : 1 yields colourless single crystals of cesium tetrafluorooxotellurate(IV). The compound crystallizes in a structure analogous to potassium pentafluoroantimonate(III) (Cmcm, Z = 4, a = 669.5(1), b = 1464.0(2), c = 717.09(7) pm). The characteristic feature is the presence of discrete pseudooctahedral tetrafluorooxotellurate(IV) anions. The structure of this complex anion could be determined for the first time. It contains a short Te–Oax bond of 177.5 pm (bond order about 1.7) and long Te–Feq bonds of 207.2 pm (bond order about 0.6). The position of the tellurium atom deviates only slightly from the equatorial plane (Oax–Te–Feq: 89.0°).  相似文献   

10.
The synthesis of ditelluroxanes: μ-oxo-bis[nitrato dimethyl tellurium (IV)] [(CH3)2TeNO3]2O (1), μ-oxo-bis[(2,4,6-trinitro)phenolato dimethyl tellurium (IV)] [(CH3)2TeOC6H2(NO2)3]2O (2) and μ-oxo-bis[1-(2,4,6-trinitro)phenolato-1,1,2,3,4,5-hexahydrotellurophene] [C4H8TeOC6H2(NO2)3]2O (3) was achieved. 1 was synthesised by the reaction of (CH3)2TeI2 with fuming HNO3 while 2 and 3 were synthesised by the reactions of R2Te(OH)2 [R2 = (CH3)2, (C4H8)] (in situ) with 2,4,6-trinitrophenol [ 2,4,6-(NO2)3C6H2OH] (picric acid). 1-3 have been investigated through UV/Vis; FT-IR, (1H, 13C) NMR spectroscopy and single crystal X-ray diffraction studies. In 1-3 the immediate coordination geometry about the central tellurium atom can be described as pseudo trigonal bipyramidal and the stereochemically active electron lone pair occupying equatorial position. The supramolecular self-organisations of these tetraorgano ditelluroxanes (1-3) are explained through cooperative participation of Te?O secondary bonds, C-H?O hydrogen bonds and π-stacking of the organic substituents.  相似文献   

11.
The reactions between diphenyl ditelluride, (PhTe)2, or di(β-naphtyl)ditelluride, (β-naphtylTe)2, with equivalent amounts of iodine have been reinvestigated and the crystal and molecular structures of iodophenyltellurium(II), (PhTeI)4, and diiododi-(β-naphtyl)tellurium(IV), (β-naphtyl)2TeI2, have been determined. The structure of iodophenyltellurium(II) (space group Cc, a = 13.850(5) Å, b = 13.852(3) Å, c = 16.494(6) Å and β = 101.69(2)°, Z = 4) is built up by four PhTeI units which are linked by weak Te–Te interactions with Te–Te distances between 3.152(5) Å and 3.182(4) Å. The angles between the tellurium atoms are approximately 90° giving an almost perfect square. Long range secondary bonds (Te–I: about 4.2 Å) link the tetrameric units to give an infinite two-dimensional network. Iodo(β-naphtyl)tellurium(II) is less stable than the phenyl derivative. Solutions of this compound decompose under formation of elemental tellurium and (β-naphtyl)2TeI2. (β-Naphtyl)2TeI2 crystallises in the monoclinic space group C 2/c (a = 21.198(6) Å, b = 5.8921(8) Å, c = 16.651(5) Å, β = 114.77(2)°). The tellurium atom is situated on a two-fold crystallographic axis and Te–I and Te–C bond lengths of 2.899(1) and 2.108(7) Å have been determined.  相似文献   

12.
Summary A method combining co-precipitation of traces of elemental Te on Se as carrier with organic solvent flotation is described. The best reduction and flotation conditions (hydrochloric and phosphinic acid concentrations, amount of Se, solvent used) were chosen. The recoveries for 100g of Te(IV) (AAS measurement in MIBK) and 2g of Te (radiochemical measurement with127Te) were 98% and 84–88%. The method was applied for separation of Te(IV) from copper metallurgy dust and slag.
Flotationsverfahren zur Abtrennung von elementarem Tellur mit Selen als Kollektor
Zusammenfassung Die Kombination der Mitfällung von Spuren elementaren Tellurs auf Selen als Trägersubstanz mit der Flotation mit Hilfe eines organischen Lösungsmittels wurde beschrieben. Die besten Bedingungen zur Reduktion und Flotation (Salzsäure-und Phosphinsäurekonzentration, Selenmenge, Lösungsmittel) wurden ausgewählt. Die Wiederfindungsraten für 100g Te(IV) (AAS-Bestimmung in MIBK) und 2g Te (radiochemische Messung mit127Te) waren 98% bzw. 84–88%. Das Verfahren wurde zur Trennung von Te(IV) aus dem Staub und der Schlacke der Kupfermetallurgie verwendet.
  相似文献   

13.
The synthesis and characterization of unsymmetric diorganotellurium compounds containing a sterically demanding 1-naphthyl or mesityl ligand and a small bite chelating organic ligand capable of 1,4-Te?N(O) intramolecular interaction is described. The reaction of ArTeCl3 (Ar = 1-C10H7, Np; 2,4,6-Me3C6H2, Mes) with (SB)HgCl [SB = the Schiff base, 2-(4,4′-NO2C6H4CHNC6H3-Me)] or a methyl ketone (RCOCH3) afforded the corresponding dichlorides (SB)ArTeCl2 (Ar = Np, 1Aa; Mes, 1Ba) or (RCOCH2)ArTeCl2 (Ar = Np; R = Ph (2Aa), Me (3Aa), Np (4Aa); Ar = Mes, R = Ph (2Ba)). Reduction of 1Aa and 1Ba by Na2S2O5 readily gave the tellurides (SB)ArTe (Ar = Np (1A), Mes, (1B)) but that of dichlorides derived from methylketones was complicated due to partial decomposition to tellurium powder and diarylditelluride (Ar2Te2), resulting in poor yields of the corresponding tellurides 2A, 2B and 3A. Oxidation of the isolated tellurides with SO2Cl2, Br2 and I2 yielded the corresponding dihalides. All the synthesized compounds have been characterized with the help of IR, 1H, 13C, and 125Te NMR and in the case of 2Aa, and 2Ba by X-ray crystallography. Appearance of only one 125Te signal indicated that the unsymmetric derivatives were stable to disproportionation to symmetric species. Intramolecular 1,4-Te?O secondary bonding interactions (SBIs) are exhibited in the crystal structures of both the tellurium(IV) dichlorides, 2Aa, and 2Ba. Steric repulsion of the mesityl group in the latter dominates over lone pair-bond pair repulsion, resulting in significant widening of the equatorial C-Te-C angle. This appears to be responsible for the lack of Te?Cl involved supramolecular associations in the crystal structure of 2Ba.  相似文献   

14.
TeX4 (X = Cl, Br) react in HCl/HBr with [Ph(CH3)2Te]X (X = Cl, Br) to give [PhTe(CH3)2]2[TeCl6] (1) and [PhTe(CH3)2]2[TeBr6] (2). The reaction of PhTeX3 (X = Cl, Br, I) in cooled methanol with [(Ph)3Te]X (X = Cl, Br, I) leads to [Ph3Te][PhTeCl4] (3), [Ph3Te][PhTeBr4] (4) and [Ph3Te][PhTeI4] (5). In the lattices of the telluronium tellurolate salts 1 and 2, octahedral TeCl6 and TeBr6 dianions are linked by telluronium cations through Te?Cl and Te?Br secondary bonds, attaining bidimensional (1) and three-dimensional (2) assemblies. The complexes 3, 4 and 5 show two kinds of Te?halogen secondary interactions: the anion-anion interactions, which form centrosymmetric dimers, and two identical sets of three telluronium-tellurolate interactions, which accomplish the centrosymmetric fundamental moiety of the supramolecular arrays of the three compounds, with the tellurium atoms attaining distorted octahedral geometries. Also phenyl C-H?halogen secondary interactions are structure forming forces in the crystalline structures of compounds 3, 4 and 5.  相似文献   

15.
The crystal structure of ditellurium(IV)-trioxide sulfate, Te2O3(SO4)—space group Pmn21–C 2v 7 ;a=8.879 (2),b=6.936 (2),c=4.646 (4) Å,Z=2—has been determined and refined by least-squares, using three-dimensionalX-ray data (1188 independent reflexions) to a final R-value of 6.3%.The crystal structure comprises puckered tellurium(IV)—oxygen layers in which the tellurium atoms are linked together by three oxygen bridges (Te–O 1.907, 1.945, 2.011 Å). The SO4 groups are arranged between these layers. Two oxygen atoms of each SO4 group are bonded to two adjacent tellurium atoms of one layer [Te–O(S) 2.270 Å] and the tellurium atoms show a (3+1) coordination. A third oxygen atom of the SO4 group is in weak interaction with two adjacent tellurium atoms of the same layer (Te–O 2.603 Å) whereas the fourth oxygen atom has distances of 2.866 Å to two adjacent tellurium atoms of the next layer and effects a very weak interaction between the

Mit 3 Abbildungen

Herrn Prof. Dr.R. Kieffer zu seinem 70. Geburtstag gewidmet.  相似文献   

16.
2-Oxo)-bis[dichloro(Z-2-chloro-1-trimethylsilylethenyl)tellurium(IV)] (III) was prepared by electrophilic addition of TeCl4 to trimethylethynylsilane in CHCl3 at room temperature. The reaction is the first example of the anti-Markownikoff type addition of TeCl4 to terminal acetylenes affording as an intermediate the 1:1 adduct [Z-1-(trimethylsilyl)-2-chlorovinyl]tellurium trichloride (II). The latter is converted into III by a sequence of successive reactions of hydrolysis and dehydration. The structure of compound III was proved by the of multinuclear (1H, 13C, 29Si, 125Te) NMR spectroscopy and XRD analysis. Compound III is the first example of structurally characterized C-TeCl2-O fragment.  相似文献   

17.
Chelex-100, in the anionic form has been studied for its ability to perform selective separation and concentration of some metal ions of nuclear importance from mineral acid solutions. The sorption behavior of Zr(IV)–Nb(V), Mo(VI), Tc(VII), Te(IV) and U(VI) from solutions of hydrochloric and sulphuric acids on Chelex-100 has been studied under static and dynamic conditions. Mo(VI) and Tc(VII) have been concentrated on the resin from hydrochloric or sulphuric acid solutions at low acidities probably, as the anions MoO 4 2– and TcO 4 , respectively. Te(IV) has been isolated from hydrochloric acid solutions of normalities 6 in the form of the anionic chloro complex TeCl 6 2– . Optimum conditions for elution and separation of Mo(VI), Tc(VII), Te(IV) and U(VI) were recommended.  相似文献   

18.
《Analytical letters》2012,45(13):1997-2010
Abstract

A very sensitive and reliable method is proposed for the determination of tellurium(IV) [Te(IV)] by Osteryoung square-wave cathodic stripping voltammetry. This method is based on the reduction of Te(IV) with bismuth(III) onto an edge-plane pyrolytic graphite electrode, followed by a cathodic potential scan. The reduced Te gave a well-defined catalytic hydrogen wave at ?1200 mV vs. Ag/AgCl. The peak height of the catalytic wave was directly proportional to the initial Te(IV) concentration in the concentration ranges of 0.01–0.10 and 0.1–1.0 µg L?1 with 30 s deposition time. A 3σ detection limit of 1.0 ng L?1 Te(IV) was obtained with the same deposition time. The relative standard deviation was 3% on replicate runs (n = 5) for the determination of 0.1 µg L?1 Te(IV). Analytical results of natural water samples demonstrate that the proposed method is applicable to the determination of traces of Te(IV).  相似文献   

19.
The distribution of the chemical states of tellurium isotopes produced by252Cf spontaneous fission, collected separately in the matrixes of NaCl, Kl, NaF, CH3COONa·3H2O, Na2SO4 and NaNO3 crystals have been investigated. Two chemical states of tellurium isotopes maintained in these matrixes are Te(IV) and Te(VI). The relationships between the distribution of the chemical states of tellurium isotopes and the produced mode of tellurium, the chemical properties of collection matrixes, the time for collecting fission fragments are studied and the possible mechanism of the interactions of the fission products and the matrixes is discussed. The results show that the distribution of chemical states of tellurium isotopes depends on the chemical properties of the collection matrixes mainly.  相似文献   

20.
Presented is an in-situ electrochemical STM study on the structural evolution of Te layer on Pt(111) whose coverage is higher than 0.25. The irreversibly adsorbed oxygenated Te layer was reduced to a rectangular (2×3) adlayer of elemental Te (Te=0.25). As additional Te was deposited underpotentially onto the Te-covered Pt(111) surface in a TeO2-saturated 0.05 M H2SO4 solution, the surface structure of Te evolved from the rectangular (2×3) (Te=0.25) to a rectangular c(2×3) (Te=0.50) via a rectangular c(3×3) (Te=0.33). The adsorbed elemental Te was mobile enough to compress the superlattice structure to denser ones, so that the resulting Te layer became electrochemically inactive in the potential range below 0.55 V.Dedicated to Professor György Horányi, Hungary, on the occasion of his 70th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号