首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orthogonal polynomials on the real line always satisfy a three-term recurrence relation. The recurrence coefficients determine a tridiagonal semi-infinite matrix (Jacobi matrix) which uniquely characterizes the orthogonal polynomials. We investigate new orthogonal polynomials by adding to the Jacobi matrixrnew rows and columns, so that the original Jacobi matrix is shifted downward. Thernew rows and columns contain 2rnew parameters and the newly obtained orthogonal polynomials thus correspond to an upward extension of the Jacobi matrix. We give an explicit expression of the new orthogonal polynomials in terms of the original orthogonal polynomials, their associated polynomials, and the 2rnew parameters, and we give a fourth order differential equation for these new polynomials when the original orthogonal polynomials are classical. Furthermore we show how the 1?orthogonalizing measure for these new orthogonal polynomials can be obtained and work out the details for a one-parameter family of Jacobi polynomials for which the associated polynomials are again Jacobi polynomials.  相似文献   

2.
Faber polynomials corresponding to rational exterior mapping functions of degree (m, m − 1) are studied. It is shown that these polynomials always satisfy an (m + 1)-term recurrence. For the special case m = 2, it is shown that the Faber polynomials can be expressed in terms of the classical Chebyshev polynomials of the first kind. In this case, explicit formulas for the Faber polynomials are derived.  相似文献   

3.
An Hlinear graph is obtained by transforming a collection of copies of a fixed graph H into a chain. An Hring‐like graph is formed by binding the two end‐copies of H in such a chain to each other. Genus polynomials have been calculated for bindings of several kinds. In this paper, we substantially generalize the rules for constructing sequences of H‐ring‐like graphs from sequences of H‐linear graphs, and we give a general method for obtaining a recursion for the genus polynomials of the graphs in a sequence of ring‐like graphs. We use Chebyshev polynomials to obtain explicit formulas for the genus polynomials of several such sequences. We also give methods for obtaining recursions for partial genus polynomials and for crosscap‐number polynomials of a bar‐ring of a sequence of disjoint graphs.  相似文献   

4.
We consider the classical problem of transforming an orthogonality weight of polynomials by means of the space R n . We describe systems of polynomials called pseudo-orthogonal on a finite set of n points. Like orthogonal polynomials, the polynomials of these systems are connected by three-term relations with tridiagonal matrix which is nondecomposable but does not enjoy the Jacobi property. Nevertheless these polynomials possess real roots of multiplicity one; moreover, almost all roots of two neighboring polynomials separate one another. The pseudo-orthogonality weights are partly negative. Another result is the analysis of relations between matrices of two different orthogonal systems which enables us to give explicit conditions for existence of pseudo-orthogonal polynomials.  相似文献   

5.
Starting from the addition formula for q-disk polynomials, which is an identity in noncommuting variables, we establish a basic analogue in commuting variables of the addition and product formula for disk polynomials. These contain, as limiting cases, the addition and product formula for little q-Legendre polynomials. As q tends to 1 the addition and product formula for disk polynomials are recovered. Date received: September 29, 1995. Date revised: May 20, 1996.  相似文献   

6.
For the filtering of peaks in periodic signals, we specify polynomial filters that are optimally localized in space. The space localization of functions f having an expansion in terms of orthogonal polynomials is thereby measured by a generalized mean value ε(f). Solving an optimization problem including the functional ε(f), we determine those polynomials out of a polynomial space that are optimally localized. We give explicit formulas for these optimally space localized polynomials and determine in the case of the Jacobi polynomials the relation of the functional ε(f) to the position variance of a well-known uncertainty principle. Further, we will consider the Hermite polynomials as an example on how to get optimally space localized polynomials in a non-compact setting. Finally, we investigate how the obtained optimal polynomials can be applied as filters in signal processing.  相似文献   

7.
In this paper, we define two homogenous q-Laguerre polynomials, by introducing a modified q-differential operator, we prove that an analytic function can be expanded in terms of the q-Laguerre polynomials if and only if the function satisfies certain q-partial differential equations. Using this main result, we derive the generating functions, bilinear generating functions and mixed generating functions for the q-Laguerre polynomials and generalized q-Hahn polynomials. Cigler’s polynomials and its generating functions discussed in [J. Cao, D.-W. Niu, A note on q -difference equations for Cigler’s polynomials, J. Difference Equ. Appl. 22 (2016), 1880–1892.] are generalized. At last, we obtain an q-integral identity involving q-Laguerre polynomials. These applications indicate that the q-partial differential equation is an effective tool in studying q-Laguerre polynomials.  相似文献   

8.
The sequences of quasi-orthogonal polynomials of order r are defined for non-quasi-definite moment functionals. Properties concerning the existence of such sequences, and relations between a quasi-orthogonal polynomial of order r and a set of orthogonal polynomials are proved. Two determinantal expressions of quasi-orthogonal polynomials of order r are given. At last it is proved that three consecutive polynomials of a sequence of quasi-orthogonal polynomials of order r satisfy a three term recurrence relation.  相似文献   

9.
Using realizations of the positive discrete series representations of the Lie algebra su(1,1) in terms of Meixner—Pollaczek polynomials, the action of su(1,1) on Poisson kernels of these polynomials is considered. In the tensor product of two such representations, two sets of eigenfunctions of a certain operator can be considered and they are shown to be related through continuous Hahn polynomials. As a result, a bilinear generating function for continuous Hahn polynomials is obtained involving the Poisson kernel of Meixner—Pollaczek polynomials; this result is also known as the Burchnall—Chaundy formula. For the positive discrete series representations of the quantized universal enveloping algebra U q (su(1,1)) a similar analysis is performed and leads to a bilinear generating function for Askey—Wilson polynomials involving the Poisson kernel of Al-Salam and Chihara polynomials. July 6, 1997. Date accepted: September 23, 1998.  相似文献   

10.
This paper analyzes polynomials orthogonal with respect to the Sobolev inner product with and (x)is a weight function.We study this family of orthogonal polynomials, as linked to the polynomials orthogonal with respect to (x) and we find the recurrence relation verified by such a family. If the weight is semiclassical we obtain a second order differential equation for these polynomials. Finally, an illustrative example is shown.  相似文献   

11.
We prove an upper bound for the Mahler measure of the Wronskian of a collection of N linearly independent polynomials with complex coefficients. If the coefficients of the polynomials are algebraic numbers we obtain an inequality for the absolute Weil heights of the roots of the polynomials. This later inequality is analogous to the abc inequality for polynomials, and also has applications to Diophantine problems.  相似文献   

12.
In this paper we explore two sets of polynomials, the orthogonal polynomials and the residual polynomials, associated with a preconditioned conjugate gradient iteration for the solution of the linear system Ax = b. In the context of preconditioning by the matrix C, we show that the roots of the orthogonal polynomials, also known as generalized Ritz values, are the eigenvalues of an orthogonal section of the matrix C A while the roots of the residual polynomials, also known as pseudo-Ritz values (or roots of kernel polynomials), are the reciprocals of the eigenvalues of an orthogonal section of the matrix (C A)?1. When C A is selfadjoint positive definite, this distinction is minimal, but for the indefinite or nonselfadjoint case this distinction becomes important. We use these two sets of roots to form possibly nonconvex regions in the complex plane that describe the spectrum of C A.  相似文献   

13.
The aim of this paper is to introduce and investigate some of the primary generalizations and unifications of the Peters polynomials and numbers by means of convenient generating functions and p‐adic integrals method. Various fundamental properties of these polynomials and numbers involving some explicit series and integral representations in terms of the generalized Stirling numbers, generalized harmonic sums, and some well‐known special numbers and polynomials are presented. By using p‐adic integrals, we construct generating functions for Peters type polynomials and numbers (Apostol‐type Peters numbers and polynomials). By using these functions with their partial derivative eqautions and functional equations, we derive many properties, relations, explicit formulas, and identities including the Apostol‐Bernoulli polynomials, the Apostol‐Euler polynomials, the Boole polynomials, the Bernoulli polynomials, and numbers of the second kind, generalized harmonic sums. A brief revealing and historical information for the Peters type polynomials are given. Some of the formulas given in this article are given critiques and comments between previously well‐known formulas. Finally, two open problems for interpolation functions for Apostol‐type Peters numbers and polynomials are revealed.  相似文献   

14.
The 0-defect polynomial of a graph is just the chromatic polynomial. This polynomial has been widely studied in the literature. Yet little is known about the properties of k-defect polynomials of graphs in general, when 0 < k ≤ |E(G)|. In this survey we give some properties of k-defect polynomials, in particular we highlight the properties of chromatic polynomials which also apply to k-defect polynomials. We discuss further research which can be done on the k-defect polynomials.  相似文献   

15.
In this paper we deal with a family of nonstandard polynomials orthogonal with respect to an inner product involving differences. This type of inner product is the so-called Δ-Sobolev inner product. Concretely, we consider the case in which both measures appearing in the inner product correspond to the Pascal distribution (the orthogonal polynomials associated to this distribution are known as Meixner polynomials). The aim of this work is to obtain a generating function for the Δ-Meixner–Sobolev orthogonal polynomials and, by using a limit process, recover a generating function for Laguerre–Sobolev orthogonal polynomials.  相似文献   

16.
A class of polynomials generatingq-nary Hamming codes is studied. The criteria for a polynomial to belong to this class are established for the general case and for the case of prime polynomials. The conditions are determined under which reducible polynomials do not belong to the class of polynomials generating theq-nary Hamming codes.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 45, No. 7, pp. 893–897, July, 1993.  相似文献   

17.
The formula of expressing the coefficients of an expansion of ultraspherical polynomials that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion is stated in a more compact form and proved in a simpler way than the formula of Phillips and Karageorghis (1990). A new formula is proved for the q times integration of ultraspherical polynomials, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. An application of these formulae for solving ordinary differential equations with varying coefficients is discussed.  相似文献   

18.
We develop a tree method for multidimensional q-Hahn polynomials. We define them as eigenfunctions of a multidimensional q-difference operator and we use the factorization of this operator as a key tool. Then we define multidimensional q-Racah polynomials as the connection coefficients between different bases of q-Hahn polynomials. We show that our multidimensional q-Racah polynomials may be expressed as product of ordinary one-dimensional q-Racah polynomial by means of a suitable sequence of transplantations of edges of the trees. Our paper is inspired to the classical tree methods in the theory of Clebsch–Gordan coefficients and of hyperspherical coordinates. It is based on previous work of Dunkl, who considered two-dimensional q-Hahn polynomials. It is also related to a recent paper of Gasper and Rahman: we show that their multidimensional q-Racah polynomials correspond to a particular case of our construction.  相似文献   

19.
In the present article, we investigate the properties of bivariate Fibonacci polynomials of order k in terms of the generating functions. For k and (1 ≤ k − 1), the relationship between the bivariate Fibonacci polynomials of order k and the bivariate Fibonacci polynomials of order is elucidated. Lucas polynomials of order k are considered. We also reveal the relationship between Lucas polynomials of order k and Lucas polynomials of order . The present work extends several properties of Fibonacci and Lucas polynomials of order k, which will lead us a new type of geneses of these polynomials. We point out that Fibonacci and Lucas polynomials of order k are closely related to distributions of order k and show that the distributions possess properties analogous to the bivariate Fibonacci and Lucas polynomials of order k.  相似文献   

20.
An extremal problem for the coefficients of sine polynomials, which are nonnegative in [0,π] , posed and discussed by Rogosinski and Szegő is under consideration. An analog of the Fejér—Riesz representation of nonnegative general trigonometric and cosine polynomials is proved for nonnegative sine polynomials. Various extremal sine polynomials for the problem of Rogosinski and Szegő are obtained explicitly. Associated cosine polynomials k n (θ) are constructed in such a way that { k n (θ) } are summability kernels. Thus, the L p , pointwise and almost everywhere convergence of the corresponding convolutions, is established. April 26, 2000. Date revised: December 28, 2000. Date accepted: February 8, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号