首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe—MCM-22分子筛催化苯一步氧化制苯酚   总被引:3,自引:0,他引:3  
刘宁  郭泉辉 《化学研究》2008,19(2):25-27
基于水热合成法制备的Fe-MCM-22分子筛,实验考察了铁离子负载量对N2O为氧化剂的苯一步氧化制苯酚反应的影响.X射线粉末衍射(XRD)、N2吸/脱附和程序升温氨脱附法(NH3-TPD)表征结果表明,Fe-MCM-22分子筛具有较高的比表面积和规整的孔道结构,且铁杂原子以同晶替代的方式引入MCM-22分子筛骨架.活性评价结果表明,Fe-MCM-22分子筛活性与负载的铁离子含量有关,当n(Fe)/n(Al)=1:9时,苯转化率达到最高的18.6%.  相似文献   

2.
《Chemphyschem》2003,4(10):1073-1078
We report on an IR spectroscopic study on the room‐temperature adsorption of NO on different iron(II )‐containing siliceous matrices. Fe2+ hosted inside the channels of MFI‐type zeolites (Fe‐ZSM‐5 and Al‐free Fe‐silicalite) exhibits pronounced coordinative unsaturation, as witnessed by the capability to form, at 300 K, [Fe2+(NO)], [Fe2+(NO)2] and [Fe2+(NO)3] complexes with increasing NO equilibrium pressure. Fe2+ hosted on amorphous supports (high surface area SiO2 and MCM‐41) sinks more deeply into the surface of the siliceous support and thus exhibits less pronounced coordinative unsaturation: only [Fe2+(NO)2] complexes were observed, even at the highest investigated NO equilibrium pressures. Activation at higher temperature (1073 K) of the Al‐free Fe‐silicalite sample resulted in the appearance of Fe2+ species similar to those observed on SiO2 and MCM‐41, and this suggests that local (since not detectable by X‐ray diffraction) amorphisation of the environment around Fe2+ anchoring sites occurs. The fact that this behaviour is not observed on the Fe‐ZSM‐5 sample activated at the same temperature suggests that framework Al species (and their negatively charged oxygen environment) have an important role in anchoring extraframework Fe2+ species. Such an anchoring phenomenon will prevent a random migration of iron species, with subsequent aggregation and loss of coordinative unsaturation. These observations can thus explain the higher catalytic activity of the Fe‐ZSM‐5 system in one‐step benzene to phenol conversion when compared with the parent, Al‐free, Fe‐silicalite system with similar Fe content. The nature of the support and the activation temperature can therefore be used as effective means to tune the degree of Fe coordination.  相似文献   

3.
Fe-ZSM-5 and Fe-silicalite zeolites efficiently catalyse several oxidation reactions which find close analogues in the oxidation reactions catalyzed by homogeneous and enzymatic compounds. The iron centres are highly dispersed in the crystalline matrix and on highly diluted samples, mononuclear and dinuclear structures are expected to become predominant. The crystalline and robust character of the MFI framework has allowed to hypothesize that the catalytic sites are located in well defined crystallographic positions. For this reason these catalysts have been considered as the closest and best defined heterogeneous counterparts of heme and non heme iron complexes and of Fenton type Fe(2+) homogeneous counterparts. On this basis, an analogy with the methane monooxygenase has been advanced several times. In this review we have examined the abundant literature on the subject and summarized the most widely accepted views on the structure, nuclearity and catalytic activity of the iron species. By comparing the results obtained with the various characterization techniques, we conclude that Fe-ZSM-5 and Fe-silicalite are not the ideal samples conceived before and that many types of species are present, some active and some other silent from adsorptive and catalytic point of view. The relative concentration of these species changes with thermal treatments, preparation procedures and loading. Only at lowest loadings the catalytically active species become the dominant fraction of the iron species. On the basis of the spectroscopic titration of the active sites by using NO as a probe, we conclude that the active species on very diluted samples are isolated and highly coordinatively unsaturated Fe(2+) grafted to the crystalline matrix. Indication of the constant presence of a smaller fraction of Fe(2+) presumably located on small clusters is also obtained. The nitrosyl species formed upon dosing NO from the gas phase on activated Fe-ZSM-5 and Fe-silicalite, have been analyzed in detail and the similarities and differences with the cationic, heme and non heme homogeneous counterparts have been evidenced. The same has been done for the oxygen species formed by N(2)O decomposition on isolated sites, whose properties are more similar to those of the (FeO)(2+) in cationic complexes (included the [(H(2)O)(5)FeO](2+)"brown ring" complex active in Fenton reaction) than to those of ferryl groups in heme and non heme counterparts.  相似文献   

4.
The interaction of N(2) and O(2) with extraframework cations of zeolite frameworks was studied by DFT, using the B3LYP method. The extraframework cation sites located in the vicinity of the double six-member rings (D6R) of FAU zeolites (SI, SI', SIII') were considered and clusters with composition (M(n)(+))(2/)(n)()H(12)Si(10)Al(2)O(18), M = Li(+), Na(+), K(+), Ca(2+), were selected to represent the adsorption centers. The cation sites SII in the center of single six-membered rings (S6R) were modeled by [M(I)H(12)Si(4)Al(2)O(6)](-) and M(II)H(12)Si(4)Al(2)O(6) clusters. The adsorption energy of N(2) and O(2) is the highest for Li(+) cations at the SIII' cation sites, while for the SI' and SII sites the adsorption energies decrease in the order Ca(2+) > Na(+) > Li(+). The calculated small N(2) adsorption energy for Li(+) cations at SII sites suggests that these sites do not take part in the sorption process in agreement with results of NMR studies and Monte Carlo simulations. The N(2) adsorption complexes with the extraframework cations are linear, while those of O(2) are bent regardless of the extraframework cation location. The SIII' cation sites are the most favorable ones with respect to N(2) adsorption capacity and N(2)/O(2) selectivity; the SII sites are less selective and the SI sites are not accessible.  相似文献   

5.
The local stability of Al atoms replacing Si in the zeolite framework is compared for all inequivalent tetrahedral (T) sites in mordenite. For Al/Si substitutions in two T sites the stable location of the compensating extraframework Zn(2+) cation forming a Lewis acid site is determined. In the most stable Zn-MOR structures Zn(2+) is located in a small ring (5MR, 6MR) containing two Al/Si substitutions. In less stable structures the Al atoms are placed at larger distances from each other and Zn(2+) interacts with only one Al site. The simulated adsorption of H(2) and CH(4) shows that adsorption strength decreases with increasing stability of the Zn(2+) Lewis site. A higher adsorption strength is observed for Zn(2+) deposited in the 5MR than for the 6MR. The reactivity of a series of stable Zn(2+) Lewis sites is tested via the dissociative adsorption of H(2) and CH(4). The heterolytic dissociation of the adsorbed molecule on the extraframework Zn(2+) cation produces a proton and an anion. The anion binds to Zn(2+) and proton goes to the zeolite framework, restoring a Br?nsted acid site. Because bonding of the anion to Zn(2+) is almost energetically equivalent for Zn(2+) in any of the extraframework positions the dissociation is governed by stabilizing bonding of the proton to the framework. Those structures which can exothermically accommodate the proton represent reaction pathways. Due to the repulsion between the proton and Zn(2+) the most favorable proton-accepting O sites are not those of the ring where Zn(2+) is deposited, but O sites close to the ring. Large differences are observed for neighboring positions in a- and b-directions and those oriented along the c-vector. Finally, among the stable Zn(2+) Lewis sites not all represent reaction pathways for dehydrogenation. For all of them the dissociation of H(2) is an exothermic process. In structures exhibiting the highest reactivity the Al/Si substitutions are placed at a large distance and the Zn(2+) cation interacts with O-atoms next to Al in the T4 site of the 5MR. This Lewis site is strong enough to break the C-H bond in the CH(4) molecule.  相似文献   

6.
Fe-substituted MCM-41 molecular sieves with ca. 1, 2, and 3 wt % Fe were synthesized hydrothermally using different sources of colloidal silica (HiSil and Cab-O-Sil) and characterized by ICP, XRD, N2 physisorption, UV-vis, EPR, TPR, and X-ray absorption. Catalysts synthesized from Cab-O-Sil showed higher structural order and stability than those from HiSil. The local environment of Fe in the mesoporous material as studied by UV-vis reveals the dominance of framework Fe in all the as-synthesized Fe-MCM-41 samples. Dislodgement of some Fe species to extraframework location occurs upon calcination, and this effect is more severe for Fe-MCM-41 (2 wt %) and Fe-MCM-41 (3 wt %), as confirmed by EPR and X-ray absorption. These materials have been used as catalytic templates for the production of carbon nanotubes (CNTs) by acetylene pyrolysis at atmospheric pressure. A relationship between the Fe loading in MCM-41 and the carbon species produced during this reaction has been established. Using our optimized conditions for this system, Fe-MCM-41 with ca. 2 wt % Fe showed the best results with particularly high selectivity for single-wall carbon nanotube (SWNT) production. This catalyst was selective for carbon nanotubes with a low amount of amorphous carbon for a narrow range of temperatures from 1073 to 1123 K. To account for the different selectivity of these catalysts for CNTs production, the local environment and chemical state of Fe in the used catalyst was further probed by X-band EPR.  相似文献   

7.
H-MFI type zeolitic materials of different Si/Al ratios have been completely or partially cesium-exchanged (cesium content ranging from 0.7 to 7.7 Cs/unit-cell (uc)). Examined with synchrotron X-ray powder diffractometry, an anhydrous sample with the Cs6.6H0.3Al6.9Si89.1O192 chemical composition revealed at ambient temperature the presence of five discrete Cs locations: Cs1 located in the channel intersection near a 10-ring window of the zigzag channel; Cs2 and Cs2', both located in the straight channel but 1.23 A apart; Cs3 and Cs3', both located in the zigzag channel and rather close to each other (2.51 A). The populations of the Cs species amounted to 2.61/0.81/1.85/0.86/0.47/uc for Cs1/2/2'/3/3', respectively. The continuous but multimodal nature of the C2 split site is well-described by a joint-probability density function. The 10-ring of the straight channel in the framework is highly elliptical (epsilon = 1.218). The populations for the same sites were also determined at higher temperatures: 131, 237, 344, and 450 degrees C. At 450 degrees C, Cs2' has migrated toward the center of the channel intersection, and the site separation between Cs2 and Cs2' has lengthened to 2.23 A. Using a temperature-controlled laboratory X-ray diffractometer, similar studies were carried out on partially or almost totally Cs-exchanged samples from various sources with differing Cs contents. They show that over the 0.7 to 4 Cs/uc range all the individual Cs populations vary linearly as a function of total Cs/uc present. At higher total Cs/uc content (4 to approximately 7 Cs/uc) solely Cs1 continues to do so. For Cs2+Cs2' and Cs3+Cs3', the variation is almost linear over the whole concentration range. Computer simulations using a 6-exp-1 Buckingham-type atom-atom van der Waals interaction model yield six possible Cs sites in the actual Cs6.6MFI framework structure. Four of them lie very close to those determined from difference Fourier maps using the room temperature data. A fifth one is close to the Cs2' species after thermal migration at 450 degrees C, and the sixth one is close to the center of the channel intersection. However, this latter site is observed experimentally only in the case of hydrated CsMFI phases. In the anhydrous Cs6.6MFI phase at room temperature, the shortest Cs-framework oxygen distance is Cs3'-O25 = 3.08 A, and the next shortest distances are Cs1-O26 = 3.37, Cs2-O11 = 3.34, Cs2'-O22 = 3.47, and Cs3-O20 = 3.34 A. The framework T(Si,Al) sites most involved in these contacts are the T9, T11, T12, T10, and T3 sites. This implies that these sites are prime candidates for Si/Al substitution.  相似文献   

8.
Transient response and temperature-programmed desorption/reaction (TPD/TPR) methods were used to study the formation of adsorbed NO(x) from N2O and its effect during N2O decomposition to O2 and N2 over FeZSM-5 catalysts at temperatures below 653 K. The reaction proceeds via the atomic oxygen (O)(Fe) loading from N2O on extraframework active Fe(II) sites followed by its recombination/desorption as the rate-limiting step. The slow formation of surface NO(x,ads) species was observed from N2O catalyzing the N2O decomposition. This autocatalytic effect was assigned to the formation of NO(2,ads) species from NO(ads) and (O)(Fe) leading to facilitation of (O)(Fe) recombination/desorption. Mononitrosyl Fe2+(NO) and nitro (NO(2,ads)) species were found by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) in situ at 603 K when N2O was introduced into NO-containing flow passing through the catalyst. The presence of NO(x,ads) does not inhibit the surface oxygen loading from N2O at 523 K as observed by transient response. However, the reactivity of (O)(Fe) toward CO oxidation at low temperatures (<523 K) is drastically diminished. Surface NO(x) species probably block the sites necessary for CO activation, which are in the vicinity of the loaded atomic oxygen.  相似文献   

9.
Various boron only ([B]-BEA) as well as aluminum- and boron-containing beta zeolites ([Al,B]-BEA) have been prepared and modified by ion exchange of ammonium, sodium, and nickel ions. The zeolite samples have been characterized by 11B, 27Al, and 29Si MAS as well as three of them by 11B and 27Al 3Q-MAS NMR spectroscopy. The quantitative contributions of defect-free Si(nX) (n = 2, 1, 0; X = Al, B) and Si(OH)x (x = 2, 1) sites to the NMR signal intensities were calculated from the various Si/(Al + B) ratios and relative 11B, 27Al, and 29Si NMR signal intensities using the special distribution of aluminum and boron in different periodical building units of the zeolite framework. The boron atoms are sitting exclusively in diagonal positions in the four-membered rings of [B]-BEA zeolites, while the aluminum atoms are situated both in diagonal and lone positions in the four-membered rings of [Al,B]-BEA zeolites. A higher part of boron atoms are positioned in framework-related deformed tetrahedral boron species than in lattice positions in the [B]-BEA than in the [Al,B]-BEA zeolites. All extraframework octahedral aluminum species are transformed back to lattice positions due to ion exchange from the protonated form to ammonium-, sodium-, or nickel-ions containing zeolites. Oppositely, trigonal boron leaves the zeolite structure completely during ion exchange.  相似文献   

10.
Mesoporous materials typified by MCM-41 possess well-ordered mesoporous channels with controllable pore sizes from 2-30 nm, and are expected as desirable materials for catalysis.However, silicious mesoporous materials generally do not have sufficient intrinsic catalytic activities.Thus many studies have focused on introducing catalytically active sites. It is expected that different synthetic methods would result in different coordination structures of metal cations introduced in MCM-41, and thus different catalytic properties in catalytic reactions. The author's group has used two methods, i.e., direct hydrothermal synthesis (DHT) and template-ion exchange (TIE), for the syntheses of V-, Fe-, and Cr-MCM-41 and applied them as catalysts to selective oxidations of hydrocarbons. This paper highlights the characterizations of the coordination structures of these metal cations introduced into MCM-41 by the DHT and the TIE methods, and the structural-property relationships of these metal ion-containing MCM-41 materials in selective oxidation reactions.MCM-41 was prepared by hydrothermal synthesis using hexadecyltrimethylammonium bromide and sodium silicate as the sources of template and silicon, respectively. In the DHT method, metal cations were directly added into the synthesis gel before hydrothermal synthesis, while the exchanging of metal ions in ethanolic solutions with the template cations contained in the uncalcined MCM-41 was performed in the TIE method. XRD and N2-adsorption measurements showed that the mesoporous regularity was not destroyed with both synthetic methods for all the metal ion-containing MCM-41 with appropriate contents of metal cations.For V-MCM-41, the characterizations with mainly EXAFS suggested that V5+ cations were in tetrahedral coordination and mainly incorporated inside the framework of MCM-41 to substitute Si4+in the samples by the DHT method. Tetrahedrally coordinated Vanadyl species were also obtained by the TIE method, but the VO4 was dispersed on the wall surface of MCM-41. The V-MCM-41-DHT showed higher selectivity in the partial oxidations of C3H8 and i-C4H10 to alkenes and acrolein and methacrolein, but the V-MCM-41-TIE exhibited better catalytic activities in the partial oxidation of CH4 to HCHO and the oxidative dehydrogenation of C2H6.For Fe-MCM-41, EXAFS studies indicated that the DHT method also resulted in Fe3+ cations incorporated inside the framework of MCM-41 if iron content was lower than ca. 1 wt%. However,aggregated iron oxides with iron in octahedral coordination were mainly observed in the calcined Fe-MCM-41 by the TIE method. In the partial oxidation of CH4 to HCHO with O2 and the epoxidation of styrene with H2O2, the Fe-MCM-41 by the DHT method exhibits remarkably higher catalytic performances than that by the TIE method.Chromium could not be incorporated inside the framework of MCM-41 to substitute Si4+, and both synthetic methods led to surface chromate species. However, the DHT method resulted in only monochromate species on the wall surface of MCM-41 while polychromate species existed over the sample by the TIE method as indicated by the UV-Raman spectroscopic studies. The two types of Cr-MCM-41 exhibited distinctly different catalytic behaviors in the partial oxidation of CH4 with O2.The Cr-MCM-41-DHT was remarkably more selective towards HCHO formation.  相似文献   

11.
Commercial H-ZSM5 zeolites with a Si/Al ratio equal to 25 and 75 have been exchanged using copper acetate aqueous solutions with different concentrations. Copper saturation is reached at the 130 and 230% level of Cu exchange for Si/Al equal to 25 and 75, respectively, although FTIR spectra showed that a fraction of Al-OH exchange positions is still available. Catalytic activity experiments of NO decomposition have been carried out at 450°C in a fixed bed reactor. Catalysts have been characterized with H2 TPR and NO adsorption experiments at 120°C. All samples are partially reduced upon thermal treatment under inert flow (He) leading to the formation of Cu+-containing sites in addition to a fraction of differently reduced copper species. The Cu+-containing sites, also responsible for NO adsorption and subsequent production of N2O at 120°C, have been proposed to be the active centers. A quantitative estimation of these species, likely having multi-ionic structure, has been provided.  相似文献   

12.
We report the preparation of highly ordered mesoporous Fe-Al-SBA-15 with isolated extraframework Fe species under acidic conditions. The materials were characterized by means of UV resonance Raman spectroscopy, in conjunction with BET, XRD, TEM, UV-vis, H2-TPR, FT-IR, and 27Al MAS NMR spectroscopy. The addition of both Fe and Al to the synthesis gel of SBA-15 results in the formation of isolated extraframework Fe species located close to the framework Al ions and the Fe content an order of magnitude higher than that in Fe-SBA-15 synthesized without Al. The existence of anchored extraframework Fe species was confirmed by the presence of a strong absorption band at 270 nm, hydrogen reduction at relatively low temperature, and the presence of a resonance Raman band at 1140 cm(-1). The location of Fe in close proximity to framework Al nuclei is further supported by 27Al MAS NMR measurements. Two characteristic UV Raman bands at 510 cm(-1) and 1090 cm(-1) excited by 244-nm laser are assigned to Fe-O-Si symmetric and asymmetric stretching modes of isolated tetrahedral Fe ions in the silica framework for Fe-SBA-15. The resonance Raman band at 1140 cm(-1) excited by 325-nm laser is attributed to the asymmetric stretching mode of the isolated extraframework iron species in Fe-Al-SBA-15. The isolated Fe species close to framework Al species are stable in acidic HCl solution, whereas the majority of Fe species in Fe-SBA-15 can be easily removed.  相似文献   

13.
The chemical environments of europium-exchanged NaX (Si/Al =1.16) and NaY (Si/Al = 2.29) zeolites have been investigated by means of 129Xe NMR and isotherm measurements of adsorbed xenon. EuNaX and EuNaY samples with varied concentrations of Eu cations were subjected to diverse chemical and thermal treatments, namely dehydration, reduction, oxidation, and re-reduction. Thermal analyses of hydrated EuNaX and EuNaY samples indicate that both the structural stability and the saturation concentration of water increase with increasing Eu content. For dehydrated EuNaY zeolites, the Eu3+ cations tend to replace Na+ ions at S2 sites and tend to be located in framework supercages; similar behavior is found for Eu2+ ions after reduction. After subsequent oxidation, Eu3+ ions migrate from supercages into small sodalite and/or D6R cages; similar results were deduced for samples after re-reduction. In contrast to the behavior observed in EuNaY, Eu3+ ions tend to exchange for Na+ ions in the sodalite and/or D6R cages in dehydrated EuNaX zeolites, regardless of the thermal treatment; this behavior is ascribed to the existence of unlocalized S3 Na+ in EuNaX samples.  相似文献   

14.
The role of the concentration and the nature of aluminium in the creation of hierarchical porosity in both commercial and synthesized MFI zeolites have been investigated through controlled mesoporosity development by desilication in alkaline medium. Framework aluminium controls the process of framework silicon extraction and makes desilication selective towards intracrystalline mesopore formation. An optimal molar Si/Al ratio in the range 25-50 has been identified; this leads to an optimal mesoporosity centred around 10 nm and mesopore surface areas of up to 235 m(2) g(-1) while preserving the intrinsic crystalline and acidic properties. At lower framework Si/Al ratios the relatively high Al content inhibits Si extraction and hardly any mesopores are created, while in highly siliceous ZSM-5 unselective extraction of framework Si induces formation of large pores. The existence of framework Al sites in different T positions that are more or less susceptible to the alkaline treatment, and the occurrence of re-alumination, are tentative explanations for the remarkable behaviour of Al in the desilication process. The presence of substantial extra framework Al, obtained by steam treatment, inhibits Si extraction and related mesopore formation; this is attributed to re-alumination of the extraframework Al species during the alkaline treatment. Removal of extraframework Al species by mild oxalic acid treatment restores susceptibility to desilication, which is accompanied by formation of larger mesopores due to the enhanced Si/Al ratio in the acid-treated zeolite.  相似文献   

15.
《Microporous Materials》1994,2(3):167-177
A synthesis of crystalline ferrisilicate having zeolite BEA topology (Fe-Beta) and containing significant quantities of iron in the framework (22 Fe atoms per unit cell based on 192 T-atoms per unit cell) has been reported. The synthesis of Fe-Beta was carried out using tetraethylammonium hydroxide (TEAOH), 25% methanolic instead of an aqueous solution, as a source of organic template. X-Ray powder diffraction (XRD) and scanning electron micrography (SEM) were used to check the structural identity and phase purity of the Fe-Beta samples. A thermogravimetric analysis (TGA) study showed that the amount of TEAOH ions interacting with Fe-Beta framework increases with increase in the iron content of the sample. The Fe ions in Fe-Beta were in the trivalent oxidation state which was confirmed by an X-ray photoelectron spectroscopy (XPS) study. A comparison of Si/Fe ratios determined by chemical analysis and XPS method allowed us to conclude that Fe3+ species are distributed homogeneously from the bulk to the surface of Fe-Beta crystallites. However, the O1s XP spectra indicated the presence of small amounts of extraframework iron oxidic impurities in as-synthesized as well as calcined samples. The infrared (IR) spectra showed three types of hydroxyl groups in Fe-Beta located at 3740, 3670 and a very broad band at ∼ 3540 cm −1. The band at 3680 cm−1 was found to be affected by pyridine adsorption and therefore was assigned to structural bridging hydroxyl groups (SiOHFe) formed by substitution of iron in the zeolite framework. The shift in the IR OH stretching frequency towards higher wave number and the desorption of NH3 at lower temperature for Fe-Beta samples as compared to Al-Beta zeolite allowed us to conclude that the strength of Brönsted acid sites in Fe-Beta materials is lower than those Brönsted acids sites in Al-Beta zeolites.  相似文献   

16.
以MFI沸石前驱体作为基本结构单元组装介孔硅铝分子筛MSU-SMFI. XRD和氮气吸附数据表明MSU-SMFI具有类似MCM-41的六方排列介孔孔道结构,而且其织构参数和以传统方法合成的含铝MCM-41也大体相当.NH3-TPD显示由沸石前驱体组装的MSU-SMFI较硅铝比相同的含铝MCM-41介孔分子筛的固体酸量显著提高.MSU-SMFI上的异丙苯催化裂化转化率比含铝MCM-41提高31%, 1,3,5-三异丙苯在MSU-SMFI上也发生了更深的裂解. MSU-SMFI上萘的叔丁基化的转化率比含铝MCM-41提高了15%.以沸石前驱体作为基本结构单元是提高介孔分子筛固体酸性的有效方法.  相似文献   

17.
The structures of the nitric oxide and dinitrogen tetroxide sorption complexes of dehydrated fully Cd2+-exchanged zeolite X (FAU) have been determined using single-crystal X-ray diffraction in the cubic space group Fdm at 21(1) degrees C. Ion exchange was accomplished by allowing an aqueous stream 0.05 M in Cd2+ to flow past each crystal for 5 days. Each crystal was then dehydrated at 500 degrees C and 2 x 10(-6) Torr for 2 days, followed by exposure to 100 Torr of zeolitically dry NO or NO2/N2O4 gas. The structures were determined in these atmospheres. The unit cell constants at 21(1) degrees C are 24.877(2) A for the dark-yellow NO complex, |Cd46(NO)16|[Si100Al92O384]-FAU, and 24.735(2) A for the black N2O4 complex, |Cd46(N2O4)25.5|[Si100Al92O384]-FAU. The structure of the NO complex was refined to R1 = 0.072 and wR2 = 0.134. In this structure, Cd2+ ions occupy four crystallographic sites. Fifteen Cd2+ ions occupy site I (at the centers of the double 6-rings (D6Rs)), and one occupies site I' (in the sodalite cavity opposite a D6R). The remaining 30 Cd2+ ions occupy two different sites II (near 6-rings in the supercages): 16 coordinate to nitric oxide molecules and 14 do not. Sixteen NO molecules lie in the supercage where each interacts weakly with a Cd2+ ion: Cd-N = 2.57(22) A. The observed N-O bond distance is 1.28(25) A and Cd-N-O is 118(10) degrees. The structure of the N2O4 complex was refined to R1 = 0.084 and wR2 = 0.216. In this structure, Cd2+ ions occupy only three crystallographic sites. The 16 D6Rs per unit cell are filled with 11.5 Cd2+ ions at site I and 9 Cd2+ ions at site I': 11.5 + 9/2 = 16. The remaining 25.5 Cd2+ ions occupy site II where each coordinates at 2.43(8) A to a nitrogen atom of a N2O4 molecule. At the coordinating nitrogen atom, O-N-O is 147(10) degrees and the N-O bond lengths are 1.07(9) and 1.23(10) A. At the second nitrogen atom, O-N-O is 140(10) degrees, and the N-O bond lengths are 1.03(13) and 1.42(12) A. The imprecisely determined N-N bond length, 2.74(17) A, appears to be very much lengthened by coordination to Cd2+. The Cd-N-N angle is 144(10) degrees. This appears to be the first crystallographic report of the coordination of N2O4 to a cation.  相似文献   

18.
用FT-IR和NH_2-TPD研究了稀土含量相同时脱铝程度不同的四种REUSY沸石的酸性质. 并对复杂羟基谱的归属进行了讨论. 同时将酸性质与骨架的Si、Al分布, 非骨架组份以及二次孔相关联, 提出浅、中度脱铝时主要脱除与超笼中HFOH相关联的Si(3Al)和Si(2Al)单元中的Al, 深度脱铝时则脱除与六方柱笼和方钠石笼中LFOH 羟基相关联的Si(1AI)中的铝和少量Si(2Al)中的铝. 另外发现, 非骨架组份使一部分HFOH羟基不能被吡啶分子接近. 而二次孔的形成使一部份LFOH 能被吡啶分子接近. 随着脱铝深度的加深, 总酸、B酸、L 酸量都减少. 但强酸和B酸的强度均相应增加.  相似文献   

19.
Adsorption methods have been developed for the removal of arsenic from solution motivated by the adverse health effects of this naturally occurring element. Iron exchanged natural zeolites are promising materials for this application. In this study we introduced iron species into a clinoptilolite-rich zeolitic tuff by the liquid exchange method using different organic and inorganic iron salts after pretreatment with NaCl and quantified the iron content in all trials by XRF spectroscopy. The materials were characterized by XRD, FTIR, FTIR-DR, UV-vis, cyclic voltammetry, ESR and M?ssbauer spectroscopies before and after adsorption of arsenite and arsenate. The reached iron load in the sample T+Fe was %Fe(2)O(3)-2.462, n(Fe)/n(Al)=0.19, n(Si)/n(Fe)=30.9 using FeCl(3), whereby the iron leachability was 0.1-0.2%. The introduced iron corresponded to four coordinated species with tetrahedral geometry, primarily low spin ferric iron adsorbing almost 12 mug g(-1) arsenite (99% removal) from a 360 mug(As(III)) L(-1) and 6 mug g(-1) arsenate from a 230 mug(As(V)) L(-1). Adsorption of arsenite and arsenate reached practically a plateau at n(Fe)/n(Si)=0.1 in the series of exchanged tuffs. The oxidation of arsenite to arsenate in the solution in contact with iron modified tuff during adsorption was observed by speciation. The reduction of ferric iron to ferrous iron could be detected in the electrochemical system comprising an iron-clinoptilolite impregnated electrode and was not observed in the dried tuff after adsorption.  相似文献   

20.
研究了不同水热老化温度对钾(K)中毒0.4K-Cu-SAPO-18样品的结构及其NH3-SCR(NH3作为还原剂的选择性还原技术)催化活性的影响. 结果表明, K中毒对样品结构影响较小, 但明显降低了其NH3-SCR性能, 在350 ℃ 时, K中毒样品0.4K-Cu-SAPO-18的NO转化率为65.88%, 明显低于未中毒Cu-SAPO-18样品的90.85%. 水热老化温度明显影响催化剂的结构, 减少了活性位点, 降低了表面酸性. 随着水热老化温度升高, 催化剂的AEI结构被破坏, 活性物种数量降低, 催化活性明显下降. 氢气程序升温还原 (H2-TPR)结果表明, 孤立的Cu2+和Cu+的总量分别从未中毒Cu-SAPO-18样品的66.61和1.32 μmol/g变化到K中毒0.4K-Cu-SAPO-18样品的39.52和101.96 μmol/g, 表明K中毒样品中孤立Cu2+ 容易转化为Cu2O. K中毒后, 样品的弱酸、 中强酸、 强酸性位点的数量降低, 分别从未中毒Cu-SAPO-18样品的0.201, 0.103和0.302 mmol/g降低到中毒0.4K-Cu-SAPO-18样品的0.102, 0.086和0.071 mmol/g. 氨气程序升温脱附(NH3-TPD)和原位红外结果表明, K竞争性地取代了催化剂中孤立的Cu2+和H+, 使K中毒0.4K-Cu-SAPO-18样品的活性位和酸性位减少, 导致催化活性下降. 在低温 NH3-SCR反应中, K中毒和未中毒样品均以Eley-Rideal(E-R)和Langmuir-Hinshelwood(L-H)机理进行, 而L-H机理占主导地位, 但K中毒样品的反应速率明显降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号