共查询到20条相似文献,搜索用时 15 毫秒
1.
E. Tilo Hoppe Isabel Hopp Max Port Bernhard Menges Christine M. Papadakis 《Colloid and polymer science》2012,290(17):1731-1741
We have investigated thick films from polybutadiene on gold-coated glass using surface plasmon resonance / leaky optical waveguide spectroscopy with the aim of investigating differences in bulk and interphase properties in a single measurement. A broad range of molar masses was studied. Drying under ambient conditions leads to an exponential decay of the film thickness. Subsequent vacuum drying does not result in any further changes in the bulk part of the film but at the polymer-solid interface, indicating the absence of residual solvent. For all molar masses studied, the surface plasmon resonance is observed at angles which are incompatible with the properties of the bulk part of the film. A polymer interphase is thus present next to the gold layer which has a refractive index lower than in the bulk. Using transversal magnetic- and transversal electric polarized light, an optical anisotropy is found in the interphase which is attributed to segment alignment along the interface with gold. 相似文献
2.
Matmour R Joncheray TJ Gnanou Y Duran RS 《Journal of colloid and interface science》2007,311(1):315-321
A novel approach to two-dimensionally crosslink polydienes at the air/water interface is proposed. The acid-catalyzed condensation of the triethoxysilane pendant groups of triethoxysilane-functionalized polybutadiene chains at the air/water interface successfully led to the formation of an insoluble crosslinked material which could be directly removed from the water surface. The efficiency of the cross-linking reaction was demonstrated through surface pressure measurements such as surface pressure-mean molecular area isotherms recorded at different reaction times and isobar experiments for different subphase pH values. The evolution of the monolayer topography during cross-linking was studied by atomic force microscopy imaging of the Langmuir-Blodgett films. 相似文献
3.
A review is given on three recently developed methods to measure the dynamic interfacial tension at the oil/water interface. These are respectively the dynamic drop volume method, the dynamic capillary method, and the (reversed) funnel method. For each method presented the basic principles are described and a few experimental results are given.Paper presented at the 7th International Conference on Surface Active Substances (Bad-Stuer, DDR, 25–30. April 1988). 相似文献
4.
We study the friction of a poly(dimethylsiloxane) (PDMS) rubber network sliding, at low velocity, on a substrate on which PDMS chains are end-tethered. We thus clearly evidence the contribution to friction of the pullout mechanism of chain ends that penetrate into the network. This interfacial dissipative process is systematically investigated by probing the velocity dependence of the friction stress and its variations with the grafting density and molecular weight of the tethered chains. This allows us to confirm semiquantitatively the picture of arm retraction relaxation of the grafted chains proposed in models of slippage at a network/brush interface. 相似文献
5.
Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations 总被引:1,自引:0,他引:1
We have used dissipative particle dynamics (DPD) to simulate the system of cetyltrimethylammonium bromide (CTAB) monolayer at the oil/water interface. The interfacial properties (interfacial density, interfacial thickness, and interfacial tension), structural properties (area compressibility modulus, end to end distance, and order parameter), and their dependence on the oil/water ratio and the surfactant concentration were investigated. Three different microstructures, spherical oil in water (o/w), interfacial phase, and water in oil (w/o), can be clearly observed with the oil/water ratio increasing. Both the snapshots and the density profiles of the simulation show that a well defined interface exists between the oil and water phases. The interface thickens with CTAB concentration and oil/water ratio. The area compressibility modulus decreases with an increase in the oil/water ratio. The CTAB molecules are more highly packed at the interface and more upright with both concentration and oil/water ratio. The root mean square end-to-end distance and order parameter have a very weak dependence on the oil/water ratio. But both of them show an increase with CTAB concentration, indicating that the surfactant molecules at the interface become more stretched and more ordered at high concentration. As CTAB concentration increases further, the order parameter decreases instead because the bending of the interface. At the same time, it is shown that CTAB has a high interfacial efficiency at the oil/water interface. 相似文献
6.
The interfacial properties at well-ordered short-chain alkanethiol monolayer-aqueous interfaces are probed to understand the water structure near a hydrophobic surface. Monolayers of hexanethiol on highly oriented gold substrates have been prepared by various methods such as adsorption from alcoholic solution of the thiol, adsorption from neat thiol, and potential-controlled adsorption. The compactness and crystallinity of the monolayer have been probed using reflection-absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical techniques. The presence of a thin layer of solvent with reduced density/dielectric constant (termed "drying transition") close to the methyl groups is identified. This is based on reduced interfacial capacitance observed in the presence of an aqueous electrolyte solution as compared to the expected value for a well-ordered monolayer-aqueous interface. Atomic force microscopy allows the determination of the variation in the dielectric constant of the solvent medium as a function of distance from the monolayer head group. The thickness of the transition layer (interphase) is found to be approximately 2 nm. The phenomenon of drying transition is not unique to water; preliminary studies indicate that formamide, which has a two-dimensional hydrogen-bonded network, shows similar characteristics. 相似文献
7.
We report in situ spectroscopic measurements monitoring the adsorption of a series of carboxylate surfactants onto the surface of the semisoluble, ionic solid fluorite (CaF2). We employ the surface-specific technique, vibrational sum-frequency spectroscopy (VSFS), to examine the effect that surfactant adsorption has on the bonding interactions and orientation of interfacial water molecules through the alteration of the electric properties in the interfacial region. In addition, we report on the chain length and headgroup dependence of the formation of hydrophobic self-assembled monolayers on the surface of the solid phase. Differences in chain length and headgroup functionality lead to large changes in the adsorption behavior and structuring of the monolayers formed and the interactions of interfacial water molecules with these monolayers. Fundamental studies such as these are essential for understanding the mechanisms involved in the surfactant adsorption process, information that is important for industrially relevant processes such as mineral ore flotation, waste processing, and petroleum recovery. 相似文献
8.
Hydrophobic bacteria, like colloidal solids, can spontaneously adsorb onto fluid-fluid interfaces and modify their mechanical properties. In this study, two strains of bacteria--Acinetobacter venetianus RAG-1 and Rhodococcus erythropolis 20S-E1-c--were prepared in their stationary (i.e. non-dividing) phase in the absence of biosurfactants; the cells were then used as emulsifiers to stabilize n-hexadecane droplets in aqueous environments. Using the micropipette technique, colloidal stability of the bacteria-coated droplets was examined through direct-contact experiments. Both types of bacteria were seen to function as effective stabilizers, although the Acinetobacter venetianus RAG-1 film provided stronger resistance to droplet-droplet coalescence. In addition to creating steric barriers, the adsorbed bacteria also interacted with one another at the interface, giving rise to higher order rheological properties. A technique of directly probing the mechanical properties of the emulsion drop surfaces (i.e. the adsorbed films) on the micrometre-scale revealed that (a) the films behaved as purely elastic sheets, and (b) with a reduction in cell concentration in the aqueous phase, less oil was emulsified, but the elastic moduli of the adsorbed films remained unchanged (suggesting an "all or none" adsorption process). These results are in contrast to a previous macroscopic (i.e. millimetre-scale) study, which showed that the absorbed films were viscoelastic, with the apparent elastic moduli depending strongly on cell concentration. The rheological properties of these bacteria-adsorbed interfaces appeared therefore to be length scale-dependent. 相似文献
9.
Azadani AN Lopez JM Hirsa AH 《Langmuir : the ACS journal of surfaces and colloids》2007,23(10):5227-5230
We have observed 2D protein crystallization under conditions where in the absence of flow, crystallization fails to occur. Even under conditions where crystallization does occur in quiescent systems, we have found that flow can accelerate the crystallization process. By interrogating the flow responsible for this enhanced crystallization, we have correlated the enhancement with large shear in the plane of the interface. Some possible mechanisms for why interfacial shear can enhance the crystallization process are proposed. 相似文献
10.
11.
Monteux C Williams CE Meunier J Anthony O Bergeron V 《Langmuir : the ACS journal of surfaces and colloids》2004,20(1):57-63
The adsorption and complexation of polystyrene sulfonate (a highly charged anionic polyelectrolyte) and dodecyltrimethylammonium bromide (a cationic surfactant) at the air-water interface can lead to interfacial gels that strongly influence foam-film drainage and stability. The formation and characteristics of these gels have been studied by combining surface tension, ellipsometry, and foam-film drainage experiments. Simultaneously, the solution electromotive force is measured and used to track the polymer-surfactant interactions in the bulk solution. We find that surface gelation occurs above the critical aggregation concentration in solution but before bulk precipitation of the polymer-surfactant complexes. Furthermore, we reveal that strong readsorption of polymer-surfactant complexes occurs during the resolubilization of the precipitated complexes at high surfactant concentrations (i.e., >critical micelle concentration). Seemingly overlooked in the past, this readsorption significantly influences the surface rheological properties and foam-film drainage of these systems. 相似文献
12.
The behavior of mixed nonionic/nonionic surfactant solutions, that is, p-(1,1,3,3-tetramethylbutyl)phenoxy poly(ethylene glycol)s Triton X-100 (TX100) and Triton X-165 (TX165) have been studied by surface tension and density measurements. The obtained results of the surface tension measurements were compared with those calculated from the relations derived by Joos, Miller, and co-workers. From the comparison, it appeared that by using these two approaches the adsorption behavior of TX100 and TX165 mixtures at different mole fractions can be predicted. The negative deviation from the linear relationship between the surface tension and composition of TX100 and TX165 mixtures in the concentration range corresponding to that of the saturated monolayer at the interface, the values of the parameters of molecular interaction, the activity coefficients, as well as the excess Gibbs energy of mixed monolayer formation calculated on the basis of Rosen and Motomura approaches proved that there is synergism in the reduction of the surface tension of aqueous solutions of TX100 and TX165 mixture when saturation of the monolayer is achieved. The negative parameters of intermolecular interaction in the mixed micelle and calculations based on MT theory of Blankschtein indicate that there is also synergism in the micelle formation for TX100 and TX165 mixture. It was also found that the values of the standard Gibbs energy of adsorption and micellization for the mixture of these two surfactants, which confirm the synergetic effect, can be predicted on the basis of the proposed equations, which include the values of the mole fraction of surfactant and excess Gibbs energy TX100 and TX165 in the monolayer and micelle. 相似文献
13.
Jianxi Zhao Jinyan Liu Rong Jiang 《Colloids and surfaces. A, Physicochemical and engineering aspects》2009,350(1-3):141-146
The mixture of the anionic O,O′-bis(sodium 2-lauricate)-p-benzenediol (C11pPHCNa) and cationic (oligoona)alkanediyl-α, ω-bis(dimethyldodecylammonium bromide) (C12-2-Ex-C12·2Br) gemini surfactants has been investigated by surface tension and pyrene fluorescence. The results show that the surface tension γ drops faster with total surfactant concentration CT for α1 = 0.1 or 0.3 than for α1 = 0.7 or 0.9, where α1 is the mole fraction of C11pPHCNa in the bulk solution on a surfactant-only basis. The fast drop in γ for α1 < 0.5 indicates strong adsorption at the air/water interface owing to the interaction between oppositely charged components, resulting in the formation of the adsorption double layers in the subsurface. The slow descent in γ for α1 > 0.5 is attributed to the pre-aggregation in the solution before the critical micelle concentration cmc. A possible mechanism is proposed. 相似文献
14.
Miano F Winlove CP Lambusta D Marletta G 《Journal of colloid and interface science》2006,296(1):269-275
The effects of the presence of a molecular monolayer on the dilatational properties of the air/water interface have been investigated. Two water insoluble amphiphiles, dipalmitoyl phosphatidyl choline and quercetin 3-O-palmitate, were spread onto a pendant drop and the dynamic surface pressure was measured by means of drop shape analysis. The surface dilatational elasticity and viscosity of the spread monolayers were also determined by the oscillating drop technique. Constraints on the range of measuring conditions were investigated and we demonstrated that the pressure-area isotherms derived from oscillatory dynamic measurements display phase behaviour similar to that found in equilibrium measurements, albeit at reduced resolution. Both the amphiphiles formed purely elastic films that were characterised by a dilatational modulus that depended on the surface concentration and obeyed a power scaling law. The exponent of the relationship could be related to the thermodynamic conditions prevailing at the interface. The phospholipid monolayer scaling exponent was 2.8 in a temperature range of 20-26 degrees C indicates a favourable solvency of molecules in the bidimensional matrix. A very high scaling exponent (11.8 at 7 degrees C) for quercetin palmitate was interpreted assuming that molecules self-organise in fibre-like structures. This interface structure and the phase behaviour was found consistent with observations of the surface film obtained by Brewster angle microscopy. The structured quercetin 3-O-palmitate monolayers are disrupted by temperature increase or by adding a 0.2 molar fraction of the immiscible dipalmitoyl phosphatidyl choline. 相似文献
15.
Erni P Fischer P Windhab EJ 《Langmuir : the ACS journal of surfaces and colloids》2005,21(23):10555-10563
The shear and dilatational rheology of condensed interfacial layers of the water-insoluble surfactant sorbitan tristearate at the air/water interface is investigated. A new interfacial shear rheometer allows measurements in both stress- and strain-controlled modes, providing comprehensive interfacial rheological information such as the interfacial dynamic shear moduli, the creep response to a stress pulse, the stress relaxation response to a strain step, or steady shear curves. Our experiments show that the interfacial films are both viscoelastic and brittle in nature and subject to fracture at small deformations, as was supported by in-situ Brewster angle microscopy performed during the rheological experiments. Although any large-deformation test is destructive to the sample, it is still possible to study the linear viscoelastic regime if the deformations involved are controlled carefully. Complementary results for the dilatational rheology in area step compression/expansion experiments are reported. The dilatational behavior is predominantly elastic throughout the frequency spectrum measured, whereas the layers exhibit generalized Maxwell behavior in shear mode within a deformation frequency regime as narrow as two decades, indicating the presence of additional relaxation mechanisms in shear as opposed to expansion/compression. If the transient rheological response from stress relaxation experiments is considered, then the data can be described well with a stretched exponential model both in the shear and dilatational deformations. 相似文献
16.
Confinement in nanopores at the oxide/water interface: modification of alumina adsorption properties
Baca M Carrier X Blanchard J 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(20):6142-6148
There is limited knowledge on the influence of the pore size on surface phenomena (adsorption, dissolution, precipitation, etc.) at the oxide/water interface and a better understanding of the space confinement in nanoscale pores should have practical implications in different areas, such as transport of contaminants in the environment or heterogeneous catalyst preparation, to name a few. To investigate the modifications of the oxide adsorption properties at the oxide/water interface in a confined environment, the surface acidobasic and ion adsorption properties of six different aluminas (5 porous commercial aluminas with pore diameters ranging from 25 to 200 A and 1 non-porous alumina) were determined by means of acid-base titration and Ni(II) adsorption. It is shown that the confinement has a moderate impact on the alumina adsorption capacity because all materials have similar surface charging behaviours and ion saturation coverages. However, a confined geometry has a much larger impact on the ion adsorption constants, which decrease drastically when the average pore diameter decreases below 200 A. These results are discussed in terms of nanoscale pore space confinement. 相似文献
17.
We report the first visualization of the interfacial turbulence developed at the polarized water/1,2-dichloroethane interface in the form of rotating surface structures. This leads to a remarkable amplification of the faradaic current (polarographic maximum) associated with the transfer of the Na+ ion from 1,2-dichloroethane to water. Interfacial turbulence is visualized at the surface of the sessile electrolyte drop using suspended graphite microparticles as a fluid flow tracer. We show that the magnitude of the faradaic current increases as the circular surface structures rotate more rapidly. The results appear to differ from the profile of the disturbing flow near the mercury/electrolyte interface accompanying polarographic maxima of the first kind. 相似文献
18.
Deng J Viers BD Esker AR Anseth JW Fuller GG 《Langmuir : the ACS journal of surfaces and colloids》2005,21(6):2375-2385
A trisilanol polyhedral oligomeric silsesquioxane (POSS), trisilanolcyclohexyl-POSS (TCyP), has recently been reported to undergo a series of phase transitions from traditional Langmuir monolayers to unique rodlike hydrophobic aggregates in multilayer films that are different from "collapsed" morphologies seen in other systems at the air/water interface. This paper focuses on the phase transitions and morphology of films varying in average thickness from monolayers to trilayers and the corresponding viscoelastic properties of trisilanolcyclohexyl-POSS molecules at the air/water interface by means of surface pressure-area per molecule (Pi-A) isotherms, Brewster angle microscopy (BAM), and interfacial stress rheometry (ISR) measurements. The morphology studies by BAM reveal that the TCyP monolayer can collapse into different 3D structures by homogeneous or heterogeneous nucleation mechanisms. For homogeneous nucleation, analysis by Vollhardt et al.'s nucleation and growth model reveals that TCyP collapse is consistent with instantaneous nucleation with hemispherical edge growth at Pi = 3.7 mN.m(-1). Both surface storage (Gs') and loss (Gs") moduli obtained by ISR reveal three different non-Newtonian flow regimes that correlate with phase transitions in the Pi-A isotherms: (A) A viscous liquidlike "monolayer"; (B) a "biphasic regime"between a liquidlike viscous monolayer and a more rigid trilayer; and (C) an elastic solidlike "trilayer". These observations provide interesting insights into collapse mechanisms and structures in Langmuir films. 相似文献
19.
Using a simple mean field density functional theory (DFT), the authors investigate the structure and phase behavior of a model colloidal fluid composed of particles interacting via a pair potential which has a hard core of diameter sigma, is attractive Yukawa at intermediate separations, and is repulsive Yukawa at large separations. The authors analyze the form of the asymptotic decay of the bulk fluid correlation functions, comparing results from DFT with those from the self-consistent Ornstein-Zernike approximation (SCOZA). In both theories the authors find rich crossover behavior, whereby the ultimate decay of correlation functions changes from monotonic to long wavelength damped oscillatory decay on crossing certain lines in the phase diagram or sometimes from oscillatory to oscillatory with a longer wavelength. For some choices of potential parameters the authors find, within the DFT, a lambda line at which the fluid becomes unstable with respect to periodic density fluctuations. SCOZA fails to yield solutions for state points near such a lambda line. The propensity towards clustering of particles, which is reflected by the presence of a long wavelength (>sigma) slowly decaying oscillatory pair correlation function, and a structure factor that exhibits a very sharp maximum at small but nonzero wave numbers, is enhanced in states near the lambda line. The authors present density profiles for the planar liquid-gas interface and for fluids adsorbed at a planar hard wall. The presence of a nearby lambda transition gives rise to pronounced long wavelength oscillations in the one-body density profiles at both types of interface. 相似文献
20.
In this paper, the phase behavior and interfacial properties of symmetric ternary polymeric blends A/B/AB are studied by dissipative particle dynamics (DPD) simulations. By using the structure factor and nematic order parameter, we carefully characterized the diversified phases and phase transitions, and established the phase diagram of such symmetric ternary blends. It can be generally divided into four regions: disordered phase (DIS) region at high temperature, ordered lamellar phase (LAM) region, bicontinuous microemulsion (BµE) channel and phase-separated phase (2P) region at low temperature with the increase of the total volume fractions of homopolymers Φ H, which shows good accordance with that in previous experimental and theoretical reports. Furthermore, we calculated the elastic constants of 2P and LAM phase, and discussed the transition mechanisms from 2P and LAM to BμE phase, respectively. The results show a direct relevance between the phase transitions and the change of interfacial properties. Finally, we also demonstrate that the BμE channel becomes narrower in lower temperature caused by the temperature dependence of interfacial properties of ternary blends. 相似文献