首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Preparation and Crystal Structure of (4-Picolinium)[LnCl4(H2O)3] (Ln = La, Ce, Pr, Nd) The complex water containing chlorides (4-Picolinium)[LnCl4(H2O)3] (Ln = La, Ce, Pr, Nd) were prepared for the first time, and the crystal structures of (4-Picolinium)[LnCl4(H2O)3] (Ln = La, Pr) were determined on single crystals by X-ray methods. The isotypic compounds crystallize with triclinic symmetry, space group P1 , Z = 2. Surprisingly there exist the dimeric complex anions [Ln2Cl8(H2O)6]2? (Ln = La, Pr).  相似文献   

2.
The reaction of Ln(NO3)3.aq with K3[Fe(CN)6] or K3[Co(CN)6] in N,N'-dimethylformamide (DMF) led to 25 heterodinuclear [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O and [Ln(DMF)4(H2O)3(mu-CN)Co(CN)5].nH2O complexes (with Ln = all the lanthanide(III) ions, except promethium and lutetium). Five complexes (Pr(3+)-Fe3+), (Tm(3+)-Fe3+), (Ce(3+)-Co3+), (Sm(3+)-Co3+), and (Yb(3+)-Co3+) have been structurally characterized; they crystallize in the equivalent monoclinic space groups P21/c or P21/n. Structural studies of these two families show that they are isomorphous. This relationship in conjunction with the diamagnetism of the Co3+ allows an approximation to the nature of coupling between the iron(III) and the lanthanide(III) ions in the [Ln(DMF)4(H2O)3(mu-CN)Fe(CN)5].nH2O complexes. The Ln(3+)-Fe3+ interaction is antiferromagnetic for Ln = Ce, Nd, Gd, and Dy and ferromagnetic for Ln = Tb, Ho, and Tm. For Ln = Pr, Eu, Er, Sm, and Yb, there is no sign of any significant interaction. The isotropic nature of Gd3+ helps to evaluate the value of the exchange interaction.  相似文献   

3.
In an assisted self-assembly approach starting from the [Mn6O2(piv)10(4-Me-py)2(pivH)2] cluster a family of Mn−Ln compounds (Ln=Pr−Yb) was synthesised. The reaction of [Mn6O2(piv)10(4-Me-py)2(pivH)2] ( 1 ) with N-methyldiethanolamine (mdeaH2) and Ln(NO3)3 ⋅ 6H2O in MeCN generally yields two main structure types: for Ln=Tb−Yb a previously reported Mn5Ln4 motif is obtained, whereas for Ln=Pr−Eu a series of Mn7Ln3 clusters is obtained. Within this series the GdIII analogue represents a special case because it shows both structural types as well as a third Mn2Ln2 inverse butterfly motif. Variation in reaction conditions allows access to different structure types across the whole series. This prompts further studies into the reaction mechanism of this cluster assisted self-assembly approach. For the Mn7Ln3 analogues reported here variable-temperature magnetic susceptibility measurements suggest that antiferromagnetic interactions between the spin carriers are dominant. Compounds incorporating Ln=NdIII( 2 ), SmIII( 3 ) and GdIII ( 5 ) display SMM behaviour. The slow relaxation of the magnetisation for these compounds was confirmed by ac measurements above 1.8 K.  相似文献   

4.
[Cp2Ln(μ-SR)]2 was reacted with Ph2C=C=O to yield ketene mono-insertion products [Cp2Ln(μ-η1:η2-OC(SR)=CPh2)]2 [R=Bn, Ln=Yb (1), Er (2), Y (3) and R--Ph, Ln=Yb (4)], indicating that the reactions of organolanthanide thiolates with ketenes are independent of the nature of the thiolate ligand and the ketene as well as the reaction condition. These reactions could provide an efficient method for the synthesis of organolanthanide complexes with the a-thiolate-substituted enolate ligand. All these complexes were characterized by elemental analysis and spectroscopic properties and the structure of complex 1 was determined through X-ray single crystal diffraction analysis.  相似文献   

5.
Preparation and Structure of (4-Picolinium)2[LnCl4(H2O)3]Cl (Ln = Eu, Ho) The complex water containing chlorides (4-Picolinium)2[LnCl4(H2O)3]Cl (Ln = Eu, Ho) were prepared for the first time. The crystal structures were determined on single crystals by X-ray methods. The isotypic compounds crystallize with triclinic symmetry, space group P–1, Z = 2. Surprisingly the structures contain the complex anions [LnCl4(H2O)3]? (Ln = Eu, Ho) where the ligands form a distorted pentagonal bipyramid, which to our knowledge has not been observed in lanthanide compounds till now.  相似文献   

6.
Three novel polyoxometalate compounds consisting of Anderson‐type anions and trivalent lanthanide cations, [Ln(H2O)7Cr(OH)6Mo6O18]n·4nH2O (Ln = Ce 1 ; Sm 2 ; Eu 3 ), have been synthesized in aqueous solution and characterized by single crystal X‐ray diffraction, elemental analyses, IR spectra, and TG analyses. Single crystal X‐ray diffractions reveal that the structures of the 1:1 composite compound formed by the heteropolyanion [Cr(OH)6Mo6O18]3? as the building unit and the [Ln(H2O)7]3+ complex fragment as the linker, which exhibit a type of zig‐zag chain with alternating cations and anions through the Mo‐Ot′‐Ln‐Ot′‐Mo linkage in the crystal. The magnetic properties of 1 ? 3 have been studied by measuring their magnetic susceptibility over the temperature range of 2‐300 K. The UV‐vis spectra of 1 give the Mo‐O and CrIII‐O charge transfer transitions at 203 and 543 nm, respectively. In addition, the fluorescent characteristic transition of the Eu3+ ions in compound 3 is reported.  相似文献   

7.
Seven isomorphous 1D chain Ln3+ complexes Ln(BTA)(HCOO)(H2O)3 (Ln = Pr (1), Gd (2), Eu (3), Tb (4) Dy (5), Er (6) and Yb (7)), and two formate coordinating and bridging 3D Ln3+ complexes Ln(HCOO)3 (Ln = Pr (8) and Nd (9)) have been synthesized and characterized by single crystal X-ray diffraction analysis. Although the Ln3+ ions in 1-7 have different radius, the trivalent lanthanide ions in 1-7 show the same coordinated environment. The well-defined single crystal structures of 8 and 9 are first samples for formate-bridged Ln3+ metallic complexes. The luminescent properties of solid samples of 2-5 at room temperature and the magnetic property of 2 have been also reported and discussed in this paper.  相似文献   

8.
Interaction of a series of lanthanide cations (Ln3+) with a symmetrical octamethyl-substituted cucurbituril (OMeQ[6]) has been investigated. X-ray single-crystal diffraction analysis has revealed that the interaction results in the formation of adducts of OMeQ[6] with aqua complexes of lanthanide cations ([Ln(H2O)8]3+), Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb in OMeQ[6]–Ln(NO3)3–H2O systems. However, no solid crystals were obtained from systems containing La, Ce, Pr, Nd and Sm. X-ray diffraction analysis has revealed that although the solid adducts fall into two isomorphous groups, there are no significant differences in the interactions between OMeQ[6] and [Ln(H2O)8]3+ complexes and in the corresponding supramolecular assemblies. Thermodynamic parameters for the interaction between OMeQ[6] and [Ln(H2O)8]3+ complexes based on isothermal titration calorimetry experiments show two periods corresponding to the above two systems, with the lighter lanthanide cations preferring to remain in solution and the heavier lanthanide cations forming crystalline solids. Electron spectroscopy has shown that interaction of OMeQ[6] with lanthanide cations could provide a means of isolating heavier lanthanide cations from their lighter counterparts.  相似文献   

9.
Thirteen solid ternary complexes Ln(Pdc)3(Phen) (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu;) have been synthesized in absolute ethanol by rare-earth element chloride low hydrate reacting with the mixed ligands of ammonium pyrrolidinedithiocarbamate (APdc) and 1,10-phenanthroline · H2O (o-Phen · H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air sensitivity. IR spectra of the complexes showed that the Ln3+ ion was coordinated with six sulfur atoms of three Pdc and two nitrogen atoms of o-Phen · H2O. It was assumed that the coordination number of Ln3+ is eight. The constant-volume combustion energies of the complexes, Δc U, were determined by a precise rotate-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, Δc H m o , and standard molar enthalpies of formation, Δf H m o were calculated. The text was submitted by the authors in English.  相似文献   

10.
Recrystallization of Ln(NO3)3 (Ln = Sm, Eu, Yb) in the presence of 18‐crown‐6 under aqueous conditions yielded [Ln(NO3)3(H2O)3] · 18‐crown‐6. X‐ray crystallography revealed isomorphous structures for each of the lanthanide complexes where [Ln(NO3)3(H2O)3] is involved in hydrogen bonding interactions with 18‐crown‐6. The transition point where the structural motif changes from [Ln(18‐crown‐6)(NO3)3] (with the metal residing in the crown cavity) to [Ln(NO3)3(H2O)3] · 18‐crown‐6 has been identified as at the Nd/Sm interface. A similar investigation involving [Ln(tos)3(H2O)6] (tos = p‐toluenesulfonate) and 18‐crown‐6 were resistant to crown incorporation. X‐ray studies show extensive intra‐ and intermolecular hydrogen bonding is present.  相似文献   

11.
Synthesized powders and grown single crystals of nominal compositions Li6Ln(BO3)3:Yb3+ (Ln=Y, Gd) were investigated by means of powder and single‐crystal X‐ray diffraction (XRD), as well as optical near‐IR spectroscopy in conjunction with electron paramagnetic resonance (EPR) spectroscopy. The appearance of two distinct zero‐phonon lines suggests the existence of two kinds of Yb3+ ions in the single crystals. The XRD results exclude the possibility of a phase transition occurring between room and low temperatures. EPR spectra of single crystals show the presence of both isolated ions and pairs of ytterbium ions substituted for Y3+. A strong temperature dependence of the intensity of Yb–Yb pairs resonance lines coincides with temperature dependence of emission peak at 978 nm, confirming a common origin of the defect giving rise to these spectra. Calculated from EPR spectra, the distance between pairs of Yb3+ is in good agreement with crystallographic ones: R=3.856 Å, Rcryst=3.849 Å.  相似文献   

12.
An equation to calculate the acidity of simple sulfides and a relative acidity scale are proposed. A correlation between the type of phase diagram and the acid-base properties of constituent simple sulfides of the system is postulated. The similarity of the acid-base properties of simple sulfides provides that they have a eutectic-type diagram. Complex sulfides are formed when the difference between the relative acidities of simple sulfides exceeds some threshold value. The complex compounds formed in MnS-Ln2S3 (Ln = La, Ce) systems, namely Mn2La6S11 and MnCe2S4, are classified with thiomanganates. The compounds formed in FeS-Ln2S3 (Ln = La, Ce, Pr) systems, namely FeLn2S4 (Ln = La, Ce) and FeLn4S7 (Ln = La-Pr), are classified with thioferrates. The strengthening of acidic properties in the Ln2S3 (Ln = La-Lu) series results in the formation of thiolanthanates: MnLn2S4 (Ln = Dy-Lu), MnLn4S7 (Ln = Tb-Tm), FeLu2S4, FeLn4S7 (Ln = Ho-Yb), and Fe4Ln2S7 (Ln = Tm, Yb, Lu).  相似文献   

13.
Molecular and Crystal Structure of Ytterbium(III)-triaqua-trinitrate, Yb(H2O)3(NO3)3 Yb(H2O)3(NO3)3 crystallizes from a concentrated solution of Yb2O3 in nitric acid in a vacuum desiccator at ambient temperature as colourless single crystals. The crystal structure was determined from single crystal four-circle diffractometer data (R3 , Z = 6, a = 1175.5(1), c = 1117.7(2) pm, Vm = 134.25 cm3/mol, R = 3.0%, Rw = 2.9%). The structure may be viewed at as a heavily compressed packing of [Yb(H2O)3(NO3)3] molecules. Yb3+ is coordinated by three bidentate nitrate ligands and three water molecules so that a tricapped trigonal prism (C.N. 9) of oxygen atoms results as the coordination polyhedron.  相似文献   

14.
SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have been synthesized by the combustion method. The results of XRD indicated that the resulting SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have a reduced and distorted monoclinic lattice compared with bulk materials. The spectral properties are measured, and it is found that the excitation peaks of 5d energy levels red shift in nanocrystals in contrast to that in bulk crystals. The mechanism of spectra and energy changes is investigated. The order of the degree of red shift for nano SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) crystals is Pr(3+) > Ce(3+) > Tb(3+), which is in good agreement with our predicted results.  相似文献   

15.
Syntheses and Crystal Structures of New Alkali Metal Rare‐Earth Tellurides of the Compositions KLnTe2 (Ln = La, Pr, Nd, Gd), RbLnTe2 (Ln = Ce, Nd) and CsLnTe2 (Ln = Nd) Of the compounds ALnQ2 (A = Na, K, Rb, Cs; Ln = rare earth‐metal; Q = S, Se, Te) the crystal structures of the new tellurides KLaTe2, KPrTe2, KNdTe2, KGdTe2, RbCeTe2, RbNdTe2, and CsNdTe2 were determined by single‐crystal X‐ray analyses. They all crystallize in the α‐NaFeO2 type with space group R3¯m and three formula units in the unit cell. The lattice parameters are: KLaTe2: a = 466.63(3) pm, c = 2441.1(3) pm; KPrTe2: a = 459.73(2) pm, c = 2439.8(1) pm; KNdTe2: a = 457.83(3) pm, c = 2443.9(2) pm; KGdTe2: a = 449.71(2) pm, c = 2443.3(1) pm; RbCeTe2: a = 465.18(2) pm, c = 2533.6(2) pm; RbNdTe2: a = 459.80(3) pm, c = 2536.5(2) pm, and CsNdTe2: a = 461.42(3) pm, c = 2553.9(3) pm. Characteristics of the α‐NaFeO2 structure type as an ordered substitutional variant of the rock‐salt (NaCl) type are layers of corner‐sharing [(A+/Ln3+)(Te2—)6] octahedra with a layerwise alternating occupation by the cations A+ and Ln3+.  相似文献   

16.
The two complexes, [Ln(Ala)2(Im)(H2O)](ClO4)3 (Ln=Pr, Gd), were synthesized and characterized. Using a solution-reaction isoperibol calorimeter, standard enthalpies of reaction of two reactions: LnCl3⋅6H2O(s)+2Ala(s)+Im(s)+3NaClO4(s)=[Ln(Ala)2(Im)(H2O)](ClO4)3(s)+3NaCl(s)+5H2O(l) (Ln=Pr, Gd), at T=298.15 K, were determined to be (39.26±0.10) and (5.33±0.12) kJ mol–1 , respectively. Standard enthalpies of formation of the two complexes at T=298.15 K, ΔfHΘm {[Ln(Ala)2(Im)(H2O)](ClO4)3(s)} (Ln=Pr, Gd), were calculated as –(2424.2±3.3) and –(2443.4±3.3) kJ mol–1 , respectively.  相似文献   

17.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

18.
One-dimensional La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and low voltage cathodoluminescence (CL) as well as kinetic decay were used to characterize the resulting samples. SEM and TEM results indicated that the diameter of the microfibers annealed at 1000 °C for 3 h was 200-245 nm. The microfibers were further composed of fine and closely linked nanoparticles. La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors showed the characteristic emission of Ce(3+) (5d → 4f), Eu(3+) ((5)D(0)→(7)F(J)) and Tb(3+) ((5)D(3,4)→(7)F(J)) under ultraviolet excitation and low-voltage electron beams (3-5 kV) excitation. An energy transfer from Ce(3+) to Tb(3+) was observed in the La(9.33)(SiO(4))(6)O(2): Ce(3+), Tb(3+) phosphor under ultraviolet excitation and low-voltage electron beam excitation. Luminescence mechanisms were proposed to explain the observed phenomena. Blue, red and green emission can be realized in La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers by changing the doping ions. So the La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors have potential applications in full-color field emission displays.  相似文献   

19.
Jia D  Zhao Q  Zhang Y  Dai J  Zuo J 《Inorganic chemistry》2005,44(24):8861-8867
New lanthanide thioantimonate(V) compounds, [Ln(en)3(H2O)x(mu(3-x)-SbS4)] (en = ethylenediamine, Ln = La, x = 0, Ia; Ln = Nd, x = 1, Ib) and [Ln(en)4]SbS4.0.5en (Ln = Eu, IIa; Dy, IIb; Yb, IIc), were synthesized under mild solvothermal conditions by reacting Ln2O3, Sb, and S in en at 140 degrees C. These compounds were classified as two types according to the molecular structures. The crystal structure of type I (Ia and Ib) consists of one-dimensional neutral [Ln(en)3(H2O)x(mu(3-x)-SbS(4))]infinity (x = 0 or 1) chains, in which SbS4(3-) anions act as tridentate or bidentate bridging ligands to interlink [Ln(en)3]3+ ions, while the crystal structure of type II (IIa, IIb, and IIc) contains isolated [Ln(en)4]3+ cations, tetrahedral SbS4(3-) anions, and free en molecules. A systematic investigation of the crystal structures of the five lanthanide compounds, as well as two reported compounds, clarifies the relationship between the molecular structure and the entity of the lanthanide(III) series, such as the stability of the lanthanide(III)-en complexes, the coordination number, and the ionic radii of the metals.  相似文献   

20.
Compounds [Fe3Ln(tea)2(dpm)6] ( Fe3Ln ; Ln= Tb–Yb, H3tea=triethanolamine, Hdpm=dipivaloylmethane) were synthesized as lanthanide(III)‐centered variants of tetrairon(III) single‐molecule magnets (Fe4) and isolated in crystalline form. Compounds with Ln=Tb–Tm are isomorphous and show crystallographic threefold symmetry. The coordination environment of the rare earth, given by two tea3? ligands, can be described as a bicapped distorted trigonal prism with D3 symmetry. Magnetic measurements showed the presence of weak ferromagnetic Fe ??? Ln interactions for derivatives with Tb, Dy, Ho, and Er, and of weak antiferromagnetic or negligible coupling in complexes with Tm and Yb. Alternating current susceptibility measurements showed simple paramagnetic behavior down to 1.8 K and for frequencies reaching 10000 Hz, despite the easy‐axis magnetic anisotropy found in Fe3Dy , Fe3Er , and Fe3Tm by single‐crystal angle‐resolved magnetometry. Relativistic quantum chemistry calculations were performed on Fe3Ln (Ln=Tb–Tm): the ground J multiplet of Ln3+ ion is split by the crystal field to give a ground singlet state for Tb and Tm, and a doublet for Dy, Ho, and Er with a large admixture of mJ states. Gyromagnetic factors result in no predominance of gz component along the threefold axis, with comparable gx and gy values in all compounds. It follows that the environment provided by the tea3? ligands, though uniaxial, is unsuitable to promote slow magnetic relaxation in Fe3Ln species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号