首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of bis­(1,3‐diphenylpropane‐1,3‐dionato)cobalt(II), [Co(dbm)2], with bis­(diphenyl­phosphino)ethane (dppe) affords the coordination polymer catena‐poly[[bis­(1,3‐diphenyl­propane‐1,3‐dionato‐κ2O,O′)cobalt(II)]‐μ‐ethyl­enebis(diphenyl­phosphine oxide)‐κ2O:O′], trans‐[Co(C15H11O2)2(C26H24O2P2)]n, as a result of oxidation of the diphos­phine. The Co atom is octa­hedral, with a CoO6 coordination sphere, and the chelating dbm ligands adopt a trans configuration. The Co atom also lies on a centre of inversion, with a further symmetry centre bis­ecting the bridging ethyl­enebis(diphenyl­phosphine oxide) ligand.  相似文献   

2.
The reaction of Fe(CO)(CH2 CHCHCH2)2 with (Ph2 PCH2)2 results in formation of a 41 mixture of two isomers of Fe(CO)(CH2 CHCHCH2)-(Ph2 PCH2 CH2 PPh2). NMR studies concerning the structures of these isomers and their dynamic behavior in solution are described.  相似文献   

3.
The reaction of [Pt(PEt3)3] with CH2I2 affords trans-[Pt(CH2PEt3)I(PEt3)2]I and is believed to proceed via the α-functionalised alkyl cis-[Pt(CH2I)I(PEt3)2], because similar ylides are obtained from cis- or trans-[PT(CH2X)(PPh3)2X] (XCl, Br, or I) with PR3 (PEt3, PBu3n, PMePh2, PEtPh2, or PPh3); cis-[Pd(CH2I)-I(PPh3)2] does not react with excess PPh3, but with PEt3 yields trans-[Pd(CH2PEt3)I(PPh3)2]I; the X-ray structure of trans-[Pt(CH2PEt3)I(PEt3)2]I (current R = 0.045) shows PtP(1) 2.332(7), PtP(2) 2.341(8), PtC 2.08(2), and PtI 2.666(2) Å, and angles (a) C(1)PtI, P(1), P(2): 176.9(8), 91.6(6), 93.4(6), (b) IPtP(1), P(2): 87.1(2), 88.5(2), and (c) P(1)P(2), 166.8(3), and (d) PtC(1)P(3), 118(1)°.  相似文献   

4.
Platinum(II) and palladium(II) complexes containing chelating acyl ligands have been synthesized from salicylaldehyde, 2-hydroxynaphthaldehyde and 2-hydroxy-3-methoxybenzaldehyde. The platinum(II) complexes [Pt(acyl)L2], acyl  OC6H4CO, OC10H6CO, O(m-CH3OC6H3CO), L  tertiary phosphine, 1/2 diphenylphosphinoethane, can be isolated with both monodentate and chelating diphosphines, whereas for palladium only the compounds with chelating phosphines are readily obtainable. The reactions of [Pt(OC6H4CO)L2] with HCl afford trans-[PtCl(OHC6H4CO)L2], L  monodentate tertiary phosphine and cis-[PtCl(OHC6H4CO)L2], L2  1,2-bis-diphenylphosphinoethane, in which the metal—carbon bond remains intact. The structure of [Pt(OC6H4CO)-(P(p-CH3C6H4)3)2] has been determined by X-ray diffraction methods and found to have the expected square planar structure. Some relevant bond lengths and angles are: PtP; 2.271(4) and 2.348(5) Å; PtC; 1.96(2) Å and PtO; 2.07(1) Å; PPtP  101°, CPtO  82°.  相似文献   

5.
A tetrahedrally coordinated cobalt(II) phosphonate, Co(O3PCH2CH2NH2), has been synthesized using hydrothermal techniques. X-ray diffraction indicates that this material is a three-dimensional open framework with rings aligned along a single axis forming infinite one-dimensional channels. The framework decomposes just above 400 °C. Magnetic susceptibility data are consistent with weak antiferromagnetic ordering at low temperatures.  相似文献   

6.
Crystal forms of cobalt(III) tris(2-aminoethanolate) hydrates, i.e., red cubic crystals of the composition fac-[Co(NH2CH2CH2O)3] · 5.44H2O (fac-I · 5.44H2O) and blue prismatic crystals of the composition mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) were studied by the 59Co, 13C NMR and X-ray diffraction methods. It was found that mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) is a new pseudopolymorphic modification of fac-[Co(NH2CH2CH2O)3] · 3H2O (fac-I · 3H2O), while fac-I · 3H2O represents a new polymorphic modification of the complex mer-[Co(NH2CH2CH2O)3] · 3H2O (mer-I · 3H2O) described previously. The comparative analysis of the spectra revealed dynamic equilibrium between these geometric isomers; the fac-isomer is stable in aqueous solutions.  相似文献   

7.
cis-PtCl(CH2CN)(PPh3)2 was obtained by the reaction of Pt(PPh3)4 with ClCH2CN in acetone. A solution of Pt(PPh3)4 and ClCH2CN in benzene was heated under reflux to give trans-PtCl(CH2CN)(PPh3)2. The reaction of the trans-isomer with Br?, I?, Ph2PCH2CH2 PPh2, Ph2PCH2CH2AsPh2 and cisPh2PCHCHPPh2 has been examined. The trans-influence of a ligand trans to the CH2CN group seems to be indicated by the 2J(PtH) of the CH2CN protons. The τ values of trans-PtX(CH2CN)(PPh3)2 and PtX(CH2 CN)(PP) (X = Cl, Br, I) are related by a linear function.  相似文献   

8.
Reaction of diphenylvinylphosphine oxide with dodecacarbonyltriiron(0) gives Ph2P(O)CHCH2·Fe(CO)4, in which coordination of the iron-containing moiety to the phosphine oxide is considered to take place through the carbon—carbon double bond of the latter.  相似文献   

9.
Methylfluorocarbonyl disulphide, FC(O)SSCH3, was prepared for the first time by reaction of FC(O)SCl with CH3SH at room temperature. Infrared data for the vapour and matrices (Ar, Ne and N2) as well as Raman, UV, mass and 19F, 13C and 1H NMR spectra have been obtained and interpreted.From these data, the most stable conformer was deduced to have the gauche conformation with respect to the FC(O) and CH3 groups with the syn conformation between the CO and SS bonds having C1 molecular symmetry. This conformer is in equilibrium with another, possibly the corresponding anti, referring to the CO and SS bonds.The main structure found for FC(O)S-containing compounds seems to be the syn conformation.  相似文献   

10.
Cobalt(I) carbonyl complexes of formula [Co(CO)n(P)5?n]ClO4 (n = 1, 2, 3; P = secondary or tertiary phosphine) have been prepared by reaction of CO under ambient conditions with Co(ClO4)2 · 6H2O and phosphine in isopropyl alcohol. The chemical and spectroscopic properties of these complexes are described and the stoichiometry and mechanism of the carbonylation reaction discussed.  相似文献   

11.
Complexes of the type [Co(CO)n(P)5?n]ClO4, [CoH2(P)4]ClO4, [CoH(P)5](ClO4)2 and [CoHX(F)4]ClO4 (P = secondary or tertiary phosphine) have been prepared from Co(ClO4)2·6 H2O and phosphine in isopropyl alcohol.  相似文献   

12.
Staudinger reactions of 20 organometallic diazoalkanes and of their parent compounds CH2N2, HC(N2)CO2Et, HC(N2)C(O)Me and HC(N2)C(O)Ph with a strong basic phosphine P(NMe2)3 are described and were classified into five groups 1–5 of different reactivity.Mono-diazomethanes LnMCHN2 (for LnM = Me3Si, Me2As) react to give (cis, trans) isomers of the corresponding phosphazines LnMC(H)NNP(NMe2)3; a stepwise reaction of functional diazogroups in organometallic bis-diazoalkanes, e.g. Hg[C(N2)CO2Et]2, has been observed.Different reactivity of organometallic diazoalkanes cannot be rationalized by known spectroscopic data but can be interpreted by steric effects. In analogy to reactions of isoelectronic azides a transition state of the Staudinger reaction is suggested with an attack of the basic phosphine at the electrophilic α-nitrogen atom and following rearrangement into the Nβ-Staudinger adduct.Trimethylgermaniumdiazomethane, Me3GeCHN2, was obtained as a novel monosubstituted organometallic diazoalkane and is fully characterized.  相似文献   

13.
Experimental data on conformational energies of the molecules FH2CHCCH2, FH2CFCCH2, FH2C(CH3)C&.dbnd;CH2 trans-FH2CHCC(CH3)H have been used to establish parameter values for the nonbonding atom ⋯ atom interaction F ⋯ C(sp2) within the Morse potential formulation. Torsional potentials have been calculated for the four molecules mentioned above and in addition for cis- and trans-FH2CHCCHF, (FH2C)2CCH2, cis-FH2CHCCHCH2F, CH3FCHHCCH2 and FH2CCH2HCCH2. Calculated results have been compared with experimental values. Torsional force constants for the molecules have been obtained. A comparison between fluoro, chloro and bromo compounds is presented.  相似文献   

14.
Phosphorus-31 NMR and X-ray crystallography show that the two similar chelating triphosphine ligands PhP(CH2CH2PPh2)2(2,2-P3) and PhP(CH2CH2CH2 PPh2)2(33-P3) form cobalt(I) complexes having trigonal-bipyramidal and square-pyramidal structures, respectively. The structures and PP coupling constants of [Co(33-P3)(P(OMe)3)CO]BF4·1THF and [Co(22-P3)(P(OMe)3)2]BF4 are given, and the change from square-pyramidal geometry in [Co(33-P3)P(OMe)3)CO]+ to trigonal-bipyramidal in [Co(22-P3)(P(OMe)3)2]+ may be rationalized in terms of a decreased “chelate bite angle” for the PhP(CH2CH2PPh2)2 ligand.  相似文献   

15.
The reaction of dppm (1,1-bis(diphenylphosphino)methane) with 2-bromo-4-phenylacetophenone and benzyl bromoacetate in chloroform produces new phosphonium salts, [Ph2PCH2PPh2CH2C(O) C6H4Ph]Br (I) and [Ph2PCH2PPh2CH2COOCH2Ph]Br (II). By allowing the phosphonium salts to react with the appropriate base, the bidentate phosphorus ylides, Ph2PCH2PPh2=C(H)C(O)C6H4Ph (III) and Ph2PCH2PPh2=C(H)C(O)OCH2Ph (IV), were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H4Ph)]} (X = Cl (V); X = Br (VI); X = I (VII)) and {HgX2[(Ph2PCH2PPh2C(H)COOCH2Ph)]} (X = Cl (VIII); X = Br (IX); X = I (X)). The FTIR and 1H, 31P and 13C NMR spectra were studied. The structure of compound III was unequivocally determined by the single-crystal X-ray diffraction technique. Single-crystal X-ray analysis of the {HgBr2[(Ph2PCH2PPh2C(H)C(O)C6H4Me)]} complex (XI) revealed the presence of a mononuclear complex containing the Hg atom in a distorted tetrahedral environment. In all complexes, the ylides referred to above were coordinated through the ylidic carbon and the phosphine atom.  相似文献   

16.
The structural parameters of the completely relaxed 4–21G ab initio geometries of more than 30 basic organic compounds are compared to experimental results. Some ranges for systematic empirical corrections, which relate 4–21G bond distances to experimental parameters, are associated with total energy increments. In general, for the currently feasible comparisons, the following corrections can be given which relate calculated distances to experimental rg parameters and calculated angles to rs-structures For CC single bond distances, deviations between calculated and observed parameters (rg) are in the ranges of ?0.006(2) to ?0.010(2) Å for normal or unstrained hydrocarbons; ?0.011(3) to ?0.016(3) Å for cyclobutane type compounds; and +0.001(5) to +0.004(4) Å for CH3 conjugated with CO. For CO single bonds the ranges are ?0.006(9) to +0.002(3) Å for CO conjugated with CO; and ?0.019(3) to ?0.027(9) Å for aliphatic and ether compounds. A very large and exceptional discrepancy exists for the highly strained ethylene oxide, rsre = ?0.049(5) Å and in CH3OCH3 and C2H5OCH3 the rsre differences are ?0.029(5), ?0.040(10) and ?0.025(10) Å. Some of these discrepancies may also be due to deficiencies of the microwave substitution method caused by atomic coordinates close to inertial planes. For CN bonds, two types of NCH3 corrections are from +0.005(6) to ?0.006(6) and from ?0.009(2) to ?0.014(6) Å; and the range for NCO is +0.012(3) to +0.028(4) Å. For isolated CC double bonds the range is + 0.025(2) to +0.028(2) Å. For conjugated CC double bonds the correction is less positive (+0.014(1) Å for benzene). For CO double bonds the corrections are ?0.004(3) to +0.003(3) Å. For bond angles of type HCH, CCH, CCC, CCO, CCO, OCO, NCO and CCC the corrections are of the order of magnitude about 1–2° (or better). Angles centered at heteroatoms are less accurate than that, when hydrogen atoms are involved. Differences in HOC and NHC angles were found in a range of ?2.3(5)° to ?6.2(4)°.  相似文献   

17.
Alkynylnickel complexes trans-C6Cl5Ni(PPhMe2)2CCR (IIIa, R  H; IIIb, R  Me; IIIc, R  Et; IIId, R  CH2OH; IIIe, R  CH2CH2OH; IIIf, R  Ph; IIIg, R  C6H4OMe-p) have been prepared from trans-[C6Cl5Ni-(PPhMe2)2L]ClO4 and monosubstituted acetylenes in the presence of triethylamine, and their reactions with alcohols in the presence of perchloric acid were studied. Complexes IIIa and IIIe afforded alkoxycarbene complexes trans-[C6Cl5Ni-(PPhMe2)2{C(OR′)Me}]ClO4 (IVa, R′  Me; IVb, R′  Et; IVc, R′  n-Pr) or trans-C6Cl5Ni(PPhMe2)2{C(CH2)3O}]ClO4(IVd), respectively, but IIIb either decomposed or afforded trans-C6Cl5Ni(PPhMe2)2CHC(OMe)Me, depending on the amount of acid used. Treatment of IVaIVd with amines resulted in deprotonation to give α-alkoxyvinyl complexes, trans-C6Cl5Ni(PPhMe2)2C(OR′)CH2 (VIaVIc) or trans-C6Cl5Ni(PPhMe2)2CCHCH2CH2O (VId), the reaction being reversible. A 1H NMR study indicated: (i) that the carbene methyl and the vinyl protons IV or VI are D-exchangeable by MeOD without catalyst; (ii) that the basicity of VIa is comparable to those of amines; (iii) that the carbene complexes IVaIVc have two isomers due to hindered rotation about the C(carbene)O bond in solution, IVb existing in the Z-form in the solid state; (iv) that the rotationalbarriers (°G) about the C(carbene)O bond in IVb and the NiC-(carbene) bond in IVd are 20 (or more) and 11.7 kcal/mol, respectively. These results are explained in term of double bond character of the carbene carbon and its surrounding atoms.  相似文献   

18.
The compounds Co(η-C5Me5)(R2PCH2CH2PR2), (R = Me, Ph) have been prepared and characterized. X-Ray diffraction studies of Co(η-C5Me5)-(Me2PCH2CH2PMe2) show the two phosphorus atoms and the ring centroid to have a trigonal coordination around the cobalt. Photoelectron spectral studies show Co(η5-C5Me5)(R2PCH2CH2PR2) to have rather low first ionization energies of around 5.1 eV, indicating that the metal centre has a very electron rich nature.  相似文献   

19.
Monomeric, five-coordinated bis(ethylxanthato)ZnII(phosphine) complexes [phosphine = PPh3, P(o-tolyl)3, P(CH2Ph)3] have been synthesized by addition of the phosphine ligand (1:1 molar ratio) to CH2Cl2 solutions of [Zn(S2COEt)2]. Bidentate ligands Ph2PCH2CH2PPh2 (dppe) and Ph2P(CH2)4PPh2 (dppb) reacted in a 1:2 molar ratio to form dinuclear phosphine-bridged complexes. The Zn—P bonds are very labile and are probably broken in solution. The characterization of all the compounds has been carried out by elemental analyses and spectroscopic methods (i.r. and n.m.r.). The structure of binuclear [(S2COEt)2Zn(-dppb)Zn(S2COEt)2], determined by X-ray crystallography, shows a distorted trigonal bipyramidal environment for the Zn atoms, formed by two chelating xanthate and a bridging dppb ligand.  相似文献   

20.
The sole and unexpected products from the reactions of a variety of lead (II) and lead (IV) compounds with [Co2(CO)6(L)2] complexes (L = tertiary arsine, phosphine, or phosphite) in refluxing benzene solution are the blue, air-stable percobaltoplumbanes [Pb{Co(CO)3(L)}4]. These have also been obtained from the reaction of Na[Co(CO)3(L)] (L  PBu3n) with lead (II) acetate which with Na[Fe(CO)2(NO)(L)] forms the isoelectronic [Pb{Fe(CO)2(NO)(L)}4] [L  P(OPh)3]. The IR spectra of the complexes in the v(CO) and v(NO) regions are consistent with tetrahedral PbCo4 or PbFe4 fragments, trigonal bipyramidal coordination about the cobalt or iron atoms and linear PbCoAs, PbCoP, or PbFeP systems. Unlike [Pb{Co(CO)4}4], our complexes do not dissociate to [Co(CO)3(L)]? or [Fe(CO)2(NO)(L)]? ions when dissolved in donor solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号