首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arene Complexes with a Half-Sandwich Structure: The 1:1 Complexes of Mesitylene with SbCl3, SbBr3, BiCl3, and BiBr3 1,3,5-Trimethylbenzene forms stable 1:1 complexes with SbCl3, SbBr3, BiCl3, and BiBr3 of the stoichiometry C6H3Me3·EX3 ( 1 – 4 ). According to the results of X-ray structure analyses of compounds 2 and 3 , one arene molecule is coordinated to each antimony or bismuth atom characterizing these adducts as half-sandwich species. To a good approximation the mesitylene molecules are centered over the metal atoms, but deviations from strict η6-hapticity are larger for antimony than for bismuth. – Despite some obvious analogies in many features of the structures, 2 and 3 are not isostructural. Differences appear with regard to the halogen bridging between the EX3 moieties giving rise to the formation of two-dimensional networks (EX3)n covered above and below by mesitylene molecules. The structural and sequential principles of the layers differ in a characteristic way for 2 and 3 .  相似文献   

2.
《中国化学会会志》2017,64(4):440-448
Praseodymium (Pr3+)‐doped YF3 (core) and LaF3 ‐covered YF3 :Pr (core–shell) nanocrystals (NCs ) were prepared successfully by an ecofriendly, polyol‐based, co‐precipitation process, which were then coated with a silica shell by using a sol–gel‐based Stober method. X‐ray diffraction (XRD), transmission electron microscopy (TEM ), thermal analysis, Fourier transform infrared (FTIR) , UV /vis, energy bandgap, and photoluminescence studies were used to analyze the crystal structure, morphology, and optical properties of the nanomaterial. XRD and TEM results show that the grain size increases after sequential growth of crystalline LaF3 and the silica shell. The silica surface modification enhances the solubility and colloidal stability of the core–shell‐SiO2 NCs . The results indicate that the surface coating affects the optical properties because of the alteration in crystalline size of the materials. The emission intensity of silica‐modified NCs was significantly enhanced compared to that of core and core–shell NCs . These results are attributed to the formation of chemical bonds between core–shell and noncrystalline SiO2 shell via La–O–Si bridges, which activate the “dormant” Pr3+ ions on the surfaces of the nanoparticles. The luminescence efficiency of the as‐prepared core, core–shell, and core–shell‐SiO2 NCs are comparatively analyzed, and the observed differences are justified on the basis of the surface modification surrounding the luminescent seed core NCs .  相似文献   

3.
Crystalline Na3B3O3F6 was synthesized from H3BO3 and NaBF4 at 623 K, alternatively NaBO2 can be reacted with NaBF4 at 673 K. The title compound (C2/c, a = 11.866(7), b = 6.901(4), c = 9.367(6) Å, β = 113.724(9)°) contains the cyclo‐fluorooxotriborate anion B3O3F63–, which displays a planar B3O3 ring. Within the margins of experimental error, its point group symmetry is D3h. Layers of fluorinated boroxine rings and sodium atoms are stacked in an alternating manner in parallel to the ab plane. The novel sodium fluorooxoborate is a poor sodium ion conductor with conductivities of 8.7 × 10–5 and 3.6 × 10–3 S · cm–1 at 523 and 623 K, respectively.  相似文献   

4.
YF3:Tb, LaF3:Ce/Tb, and GdF3:Tb nanoparticles (NPs) were synthesized by the thermal co-precipitation technique at a lower temperature. X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), FT-Raman, UV/visible, and photoluminescence techniques were utilized to determine the phase purity, crystal phase, thermal stability, exterior behavior, optical properties, colloidal stability, and luminescent properties. The XRD results showed the different crystal phases in each nanoproduct. The TGA studies exhibited slight degradation at a lower temperature, which suggests surface water adsorption and organic moieties. The FTIR spectra revealed the existence of the IR bands related to hydroxyl and (C O) groups, suggesting the presence of organic moieties. The absorption spectra and optical bandgap energies were measured in aqueous media for the determination of the colloidal dispersibility in an aqueous solution. The excitation and emission spectra were analyzed, and all observed excitation and emission transitions were labeled. The emission spectra of the LnF3:Tb NPs exhibited distinctive features of the most dominant emission transition located at 543 (5D47F5) under the excitation at 368 nm. Among the presented LnF3 host matrices, YF3:Tb NPs demonstrated high crystallinity along with superior photoluminescence properties. These findings are highly useful in the conjugation of biomolecules for sensitive detection of biomolecules and optical bioimaging.  相似文献   

5.
The influence of the number of 3, 3, 3-trifluoropropyl(methyl)siloxane links (Φ/Φ) in the cyclotetrasiloxanes ΦmD4-m, where D represents the dimethylsiloxane link and m=0–4, on the rearrangement of these compounds in acetone solution under the action of sodium siloxanolate has been studied. The rearrangement takes place with the formation of a linear polysiloxane the degradation of which yields, in addition to the initial ring, cyclosiloxanes with a different structure. The rate of rearrangement of ΦmD4-m and of the formation of a linear polysiloxane rises with an increase in m from 0 to 3. The equilibrium concentration of the linear polysiloxane formed from ΦmD4-m is inversely proportional to m. Results have been obtained on the kinetics of the formation of the cyclosiloxanes ΦmDn, where m=0–5, n=0–5, and m+n=3–6, in the rearrangement of the rings ΦD3, Φ2D2, Φ3D, and Φ4. The reactivity of the siloxane links rises in the sequence ~ (CH3)2Si-O-Si(CH3)2 ~<~ (CF3CH2CH2)-(CH3) Si-O-Si(CH3)2 ~<(CF3CH2CH2) (CH3)Si-O-Si(CH3) (CH2CH2CF3) ~. Because of the negative inductive effect transferred through the siloxane links, the 3, 3, 3-trifluoropropyl groups strongly activate the siloxane ring with respect to nucleophiiic reagents.  相似文献   

6.
Electrical conductivities of dilute aqueous solutions for unsymmetrical electrolytes of the type 3:1, 1:3, 3:2, 4:1, 1:4, 4:2, 2:4, 1:5 1:6 and 6:1 are reexamined in the framework of the Quint-Viallard conductivity equations, in order to obtain a uniform representation of their conductivities. The molar and equivalent limiting conductances were evaluated with ion association constants, which were treated as adjustable parameters. The derived values were compared with corresponding results from the literature. The following electrolytes are considered: rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) halides, perchlorides, nitrates and sulfates; hexamminecobalt and tris-ethylenediaminecobalt halides, perchlorides, nitrates and sulfates; [Ni2(trien)3]Cl4, [Pt(pn)3]Cl4, [Co2(trien)3]Cl6; cyanides K3[Fe(CN)6], K3[Co(CN)6], M3[W(CN)8] with M=Na, K, Rb, Cs; Ca2[Fe(CN)6], K4[Fe(CN)6], K4[Mo(CN)8], K4[W(CN)8], K4[Ru(CN)8], (Me4N)4[Fe(CN)6], (Pr4N)4[Fe(CN)6], K4[Mo(CN)8], (Me4N)4[Mo(CN)8], (Et4N)4[Mo(CN)8] and (Pr4N)4[Mo(CN)8]; phosphates Na4P2O7, Na4P4O12, Na5P3O10, Na6P6O18 and (Me4N)4P4O12.  相似文献   

7.
On Fluoropalladates(II): KPdF3, RbPdF3, TIPdF3, and K2PdF4 By heating the binary fluorides in a closed system we obtained RbPdF3 (a = 4.298 Å), TIPdF3 (a = 4.301 Å) of dark brown colour, both cubic, and KPdF3(orthorombic; a = 5.986, b = 6.001, c = 8.503 Å) of dark brown violet colour which belong to the perovskite type of the GdFeO3 variation of this type. High pressure investigations on CsPdF3 show the possibility of a cubic high pressure modification (a = 4.13 Å). The Madelung Part of Lattice Energy (MAPLE) is calculated and discussed.  相似文献   

8.
Herein we describe a convenient lab scale synthesis for pure and solvent‐free binary uranium(III) halides UCl3, UBr3, and UI3. This is achieved by the reduction of the respective uranium(IV) halides with elemental silicon in borosilicate ampoules at moderate temperature. The silicon tetrahalides SiX4 formed as a side product are utilized for the removal of excess starting material via a chemical vapor transport reaction. The syntheses introduced herein avoid the need for pure metallic uranium and are based on uranium(IV) halides synthesized from UO2 and the respective aluminum halides and purified by chemical vapor transport. These uranium(III) halides are obtained in single crystalline form. A similar reaction yields UF3 as a microcrystalline powder. However, no beneficial transport reaction occurs with this halide. Also, a higher temperature has to be applied and steel ampoules have to be used. The identities and purity of the products were checked by powder X‐ray diffraction as well as IR spectroscopy. The synthesis of UI3 enabled its crystal structure determination on single crystals for the first time. UI3 crystallizes in the PuBr3 structure type with space group type Cmcm and a = 4.3208(9), b = 13.923(3), c = 9.923(2) Å, V = 596.9(2) Å3, and Z = 4 at T = 100 K.  相似文献   

9.
Preparation and Thermal Stability of Calcium Phosphide and Arsenide Iodides: Ca3PI3, Ca3AsI3, Ca2PI, and Ca2AsI Ca3PI3 and Ca3AsI3 (colourless) as well as Ca2PI and Ca2AsI (greenish yellow) were prepared purely by reaction of “Ca3P2” and “Ca3As2” resp. with CaI2 in the molar ratios 1:3 and 1:1 resp. in steel ampoules under argon at 800°C and 1 000°C resp. Analytical results, lattice constants, and densities of the compounds are given. They don't possess a homogeneity range. Ca3PI3 and Ca3AsI3 begin to decompose reversibly at 950 and 1 000°C resp. by forming Ca2PI and Ca2AsI resp. and CaI2. Ca2PI is yet stable at 1 200°C and Ca2AsI at 1100°C.  相似文献   

10.
The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid)  CaTiO3(solid), ΔG° ± 85/(J · mol?1) = ?80,140 ? 6.302(T/K); 4CaO(solid) + 3TiO2(solid)  Ca4Ti3O10(solid), ΔG° ± 275/(J · mol?1) = ?243,473 ? 25.758(T/K); 3CaO(solid) + 2TiO2(solid)  Ca3Ti2O7(solid), ΔG° ± 185/(J · mol?1) = ?164,217 ? 16.838(T/K).The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.  相似文献   

11.
In the system LiSO3CF3/RbSO3CF3 four different quasi‐ternary phases occur: Li0.7Rb0.3SO3CF3, Li0.55Rb0.45SO3CF3, LiRb2(SO3CF3)3, and Li0.2Rb0.8SO3CF3. These have been identified, and characterized by means of X‐ray powder diffractometry and DSC. LiSO3CF3 is trimorphic, LiRb2(SO3CF3)3 is dimorphic and RbSO3CF3 exists in four different modifications. The cation dynamics has been studied using 7Li‐NMR line shape analysis and 7Li‐spin lattice relaxation (T1) measurements. The pure and mixed trifluoromethylsulfonates in the system LiSO3CF3/RbSO3CF3 are solid electrolytes. Their ionic conductivities below 475 K increase with the rubidium content. Above this temperature, the conductivity of β‐LiRb2(SO3CF3)3 exceeds the one of δ‐RbSO3CF3.  相似文献   

12.
Ab initio calculations using both pseudopotential and double and triple-ζ all-electron basis sets, with and without electron correlation (MP2, QCISD), have been performed on the λ4-sulfanyl (SH3), λ4-selanyl (SeH3), and λ4-tellanyl (TeH3) radicals. All-electron basis sets of double-ζ quality predict that SH3 and SeH3 correspond to transition states on their respective potential energy surfaces. In contrast, the pseudopotentials of Hay and Wadt predict that SH3 and SeH3 correspond to local minima at the QCISD level of theory while the pseudopotentials of Christiansen and Stevens predict transition states. By comparison, TeH3 proved to be a local minimum at all levels of theory. Interestingly, when a very large (triple-ζ) all-electron basis set was used, SH3 proved to be a transition state; however, in this instance the potential energy surface was found to be much flatter than in the case for which a double-ζ basis set was used, suggesting that further improvements in the basis set may lead to a local minimum. Further improvements in the all-electron selenium basis also led to a local minimum for SeH3 at the QCISD level of theory. © 1995 by John Wiley & Sons, Inc.  相似文献   

13.
Five new quaternary chalcogenides of the 1113 family, namely BaAgTbS3, BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3, were synthesized by the reactions of the elements at 1173–1273 K. For CsAgUTe3 CsCl flux was used. Their crystal structures were determined by single‐crystal X‐ray diffraction studies. The sulfide BaAgTbS3 crystallizes in the BaAgErS3 structure type in the monoclinic space group C3,2hC2/m, whereas the tellurides BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3 crystallize in the KCuZrS3 structure type in the orthorhombic space group D1,27,hCmcm. The BaAgTbS3 structure consists of edge‐sharing [TbS69–] octahedra and [AgS59–] trigonal pyramids. The connectivity of these polyhedra creates channels that are occupied by Ba atoms. The telluride structure features 2[MLnTe32–] layers for BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and 2[AgUTe31–] layers for CsAgUTe3. These layers comprise [MTe4] tetrahedra and [LnTe6] or [UTe6] octahedra. Ba or Cs atoms separate these layers. As there are no short Q ··· Q (Q = S or Te) interactions these compounds achieve charge balance as Ba2+M+Ln3+(Q2–)3 (Q = S and Te) and Cs+Ag+U4+(Te2–)3.  相似文献   

14.
Zusammenfassung Es wurden die Enthalpien der Reaktionen von AsCl3, AsBr3, AsJ3, SbCl3, SbBr3 und SbJ3 mit Tributylphosphat, N,N-Dimethylacetamid und Hexamethylphosphorsäuretriamid bestimmt. Das Verhalten der Addukte bei Gegenwart eines Überschusses der Donoren wird beschrieben.
Acceptor properties of AsCl3, AsBr3, AsI3, SbCl3, SbBr3, and SbI3
The enthalpies of the reactions of AsCl3, AsBr3, AsI3, SbCl3, SbBr3 and SbI3 with tributylphosphate, N,N-dimethylacetamide and hexamethylphosphoric acid triamide were measured. The behavior of the adducts in the presence of excess donor molecules is described.


Mit 5 Abbildungen  相似文献   

15.
Hg2(CH3SO3)2: Synthesis, Crystal Structure, Thermal Behavior, and Vibrational Spectroscopy Colorless single crystals of Hg2(CH3SO3)2 are formed in the reaction of HgO, Hg, and HSO3CH3. In the monoclinic compound (I2/a, Z = 4, a=883.2(2), b=854.0(2), c=1188.9(2) pm, β = 92.55(2)°, Rall=0.0445) the Hg22+ ion is coordinated by two monodentate CH3SO3 anions. Further contacts Hg‐O occur in the range from 262 to 276 pm and lead to a linkage of the [Hg2(CH3SO3)2] units. The thermal analysis shows that Hg2(CH3SO3)2 decomposes at 300° yielding elemental mercury. The mass numbers of the species evolved lead to the assumtion that SO3, SO2, CO2, CO and H2CO are formed during the reaction. In the IR and the Raman spectrum the typical vibrations of the CH3SO3 ion are observed, the Raman spectrum shows the Hg‐Hg stretching vibration at 177 cm—1 within the Hg22+ ion additionally.  相似文献   

16.
Starting from the para‐phenylenediamine derivative HN(SiMe3)‐C6H4‐NH(SiMe3), a lithiation and subsequent borylation give [(MeO)2B]N(SiMe3)‐C6H4‐N(SiMe3)[B(OMe)2] ( 1 ), the hydridation of which yields Li2[(H3B)N(SiMe3)‐C6H4‐N(SiMe3)(BH3)] ( 2 ). Applying ZrCl4 upon 2 initiates a condensation to give the title compound [‐N(SiMe3)‐p‐C6H4‐N(SiMe3)‐BH‐]2, a hetero[3, 3]paracyclophane with two N‐B‐N chains that connect the para‐phenylene units. The product 3 crystallizes in the orthorhombic space group P212121.  相似文献   

17.
The processes of vibrational relaxation and unimolecular dissociation of the perfluoromethyl halides CF3Cl, CF3Br, and CF3I have been studied in the shock tube with the laser-schlieren technique. Vibrational relaxation was resolved in pure CF3Cl and CF3Br (400–484 K and 400–500 K, respectively), and in the mixtures; 2% CF3Cl/Kr (500–1000 K), 10% CF3Cl/Kr (440–670 K), 4% CF3Br/Kr (450–850 K), and 2% CF3I/Kr (620–860 K). Relaxation in the pure gases is extremely rapid, but shows a well-resolved, accurately exponential decay which provides very precise relaxation times in close agreement with ultrasonic results. Relaxation times as short as 0.1 μs-atm can be resolved, showing the method has a resolution within a factor 2–3 of the best ultrasonic methods. Relaxation dilute in rare gas shows a complex double exponential behavior consistent with a two-stage series process. Rates of CF3(SINGLEBOND)X fission in these mixtures were measured over 1800–3000 K, P<0.55 atm, for CF3Cl; 1600–2500 K, P<0.55 atm, in CF3Br; and 1260–2100 K, P<0.34 atm, in CF3I. Rates for dissociation were derived from a full profile modeling using a secondary mechanism of six CF3 reactions. RRKM analysis showed all dissociations to lie near the low pressure limit. Using literature barriers, these rates are best fit with (ΔE)all=−270 cm−1 for CF3Cl, 〈ΔEdown=0.3 T for CF3Br, and 〈ΔEdown=800 cm−1 for CF3F. All these transfers are on the large side, similar to those found in other halogenated methanes. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
Addy Pross  Leo Radom 《Tetrahedron》1980,36(5):673-676
Ab initio molecular orbital theory including full geometry optimization at the 4-31G level is used to examine the interactions between substitutents X(X = Li, BeH, BH2, CH3, NH2, OH and F) and substrates Y(Y = NH3+, CH3, BH3?) in the isoelectronic series XNH3+, XCH3 and XBH3?. The results indicate that the interaction energies are dominated by σ-effects. NH3+ is found to interact favorably with the σ-donors (e.g. Li, BeH and BH2) and unfavorably with the σ-acceptors (e.g. F, OH, NH2). The reverse pattern a observed for XBH3?. The range of interaction energies for XCH3 is considerably smaller than for XNH3+ and XBH3?.  相似文献   

19.
The influence of the number of 3, 3, 3-trifluoropropyl(methyl)siloxane links (/) in the cyclotetrasiloxanes mD4-m, where D represents the dimethylsiloxane link and m=0–4, on the rearrangement of these compounds in acetone solution under the action of sodium siloxanolate has been studied. The rearrangement takes place with the formation of a linear polysiloxane the degradation of which yields, in addition to the initial ring, cyclosiloxanes with a different structure. The rate of rearrangement of mD4-m and of the formation of a linear polysiloxane rises with an increase in m from 0 to 3. The equilibrium concentration of the linear polysiloxane formed from mD4-m is inversely proportional to m. Results have been obtained on the kinetics of the formation of the cyclosiloxanes mDn, where m=0–5, n=0–5, and m+n=3–6, in the rearrangement of the rings D3, 2D2, 3D, and 4. The reactivity of the siloxane links rises in the sequence (CH3)2Si-O-Si(CH3)2 < (CF3CH2CH2)-(CH3) Si-O-Si(CH3)2 <(CF3CH2CH2) (CH3)Si-O-Si(CH3) (CH2CH2CF3) . Because of the negative inductive effect transferred through the siloxane links, the 3, 3, 3-trifluoropropyl groups strongly activate the siloxane ring with respect to nucleophiiic reagents.For part I, see [3].  相似文献   

20.
The catalytic rearrangement of the cyclopentasiloxanes ΦmD5-m, where Φ represents a 3, 3, 3-trifluoropropyl(methyl)siloxane link and D a dimethylsiloxane link, and m=2–5 has been studied by the method described previously [1]. The rate of rearrangement and the rate of formation of a linear polysiloxane rise with an increase in m from 2 to 4. The equilibrium concentration of the linear polysiloxane formed from ΦmD5-m and from ΦmD4-m (m=0–4) [1] is inversely proportional to the molar fraction of Φ links in the ring and rises with an increase in the total concentration of siloxane links in solution. Results have been obtained on the kinetics of the formation of the cyclosiloxanes ΦmDn (where m=0–5, n=0–5, and m+n=3-6) during the rearrangement of the cyclopentasiloxanes ΦmD5-m. It has been established that at equilibrium a mixture of cyclosiloxanes ΦmDn containing practically constant ratios of tetramers, pentamers, and hexamers (m+n=4, 5, and 6) is obtained, regardless of the composition and structure of the initial cyclosiloxane and of the conditions of rearrangement (polymerization). The cyclopentasiloxanes ΦmD5-m are less active in the process of rearrangement than the cyclotetrasiloxanes ΦmD4-m. The activity of the cyclosiloxanes in rearrangement in the presence of a base rises in the sequence D4?ΦD3 ≈ Φ2D33D24D < Φ2D2 < Φ3D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号