首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Four polypyridyl bridging ligands BL1−4 containing open‐chain crown ether, where BL1−3 formed by the condensation of 4,5‐diazafluoren‐9‐oxime with diethylene glycol di‐p‐tosylate, triethylene glycol di‐p‐tosylate, and tetraethylene glycol di‐p‐tosylate, respectively. BL4 formed by the reaction of 4‐(1,10‐phenanthrolin‐5‐ylimino)methylphenol with triethylene glycol di‐p‐tosylate, have been synthesized. Reaction of Ru(bpy)2Cl2·2H2O with BL, respectively, afforded four bimetallic complexes [(bpy)2RuBL1−4Ru(bpy)2]4+ as [PF6] salts. Electrochemistry of these complexes is consistent with one RuII‐based oxidation and several ligand‐based reductions. These complexes show metal‐to‐ligand charge transfer absorption at 439‐452 nm and emission at 570‐597 nm.  相似文献   

2.
The phenylthiocarbene complexes, [(CO)5MC(CH3)(SPh)] (M = Cr, Mo, or W) have been prepared in good yield by the reaction of [(CO)5MC(CH3)(OCH3)] (M = Cr, Mo, or W) with NaSPh in benzene/methanol in the presence of HCl. A series of para-substituted phenylthiocarbene complexes of tungsten. [(CO)5WC(CH3)SC6H4Y)], (Y = p-Br, p-F, p-H, p-CH3, p-OCH3 or p-OH) have also been prepared by the reaction of the appropriate arenethiolate ion with [(CO)5WC(CH3)(OCH3)]. Poor nucleophiles such as p-nitrobenzenethiolate and pentafluorobenzenethiolate did not react with [(CO)5WC(CH3)(OCH3) to form the corresponding phenylthiocarbene complex. A mechanism accounting for the formation of these phenylthiocarbene complexes is proposed. The complexes have been characterized by their infrared, electronic, mass, 1H NMR, and 13C NMR spectra. These spectroscopic data have been used to establish the structure of these complexes in solution and indicate that the phenyl ring bonded to sulfur is probably not coplanar with the “carbene” plane.  相似文献   

3.
A theoretical investigation at the density functional theory level (B3LYP) has been conducted to elucidate the impact of ligand basicity on the binding interactions between ethylene and copper(I) ions in [Cu(?? 2-C2H4)]+ and a series of [Cu(L)(?? 2-C2H4)]+ complexes, where L?=?substituted 1,10-phenanthroline ligands. Molecular orbital analysis shows that binding in [Cu(?? 2-C2H4)]+ primarily involves interaction between the filled ethylene ??-bonding orbital and the empty Cu(4s) and Cu(4p) orbitals, with less interaction observed between the low energy Cu(3d) orbitals and the empty ethylene ??*-orbital. The presence of electron-donating ligands in the [Cu(L)(?? 2-C2H4)]+ complexes destabilizes the predominantly Cu(3d)-character filled frontier orbital of the [Cu(L)]+ fragment, promoting better overlap with the vacant ethylene ??*-orbital and increasing Cu????ethylene ??-backbonding. Moreover, the energy of the filled [Cu(L)]+ frontier orbital and mixing with the ethylene ??*-orbital increase with increasing pK a of the 1,10-phenanthroline ligand. Natural bond orbital analysis reveals an increase in Cu????ethylene electron donation with addition of ligands to [Cu(?? 2-C2H4)]+ and an increase in backbonding with increasing ligand pK a in the [Cu(L)(?? 2-C2H4)]+ complexes. Energy decomposition analysis (ALMO-EDA) calculations show that, while Cu????ethylene charge transfer (CT) increases with more basic ligands, ethylene????Cu CT and non-CT frozen density and polarization effects become less favorable, yielding little change in copper(I)?Cethylene binding energy with ligand pK a. ALMO-EDA calculations on related [Cu(L)(NCCH3)]+ complexes and calculated free energy changes for the displacement of acetonitrile by ethylene reveal a direct correlation between increasing ligand pK a and the favorability of ethylene binding, consistent with experimental observations.  相似文献   

4.
A series of conformationally rigid half-sandwich organoruthenium(II) complexes with the general formula [(η6-p-cymene)RuCl(L)] (where L = mono anionic 2-(naphthylazo)phenolato ligands) have been synthesized from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with a set of 2-(naphthylazo)phenolato O,N-donor ligands. All the ruthenium complexes were fully characterized by FT-IR, 1H NMR, and UV–Vis spectroscopy as well as elemental analysis. In dichloromethane solution all the metal complexes exhibits characteristic metal-to-ligand charge transfer bands (MLCT) and emission bands in the visible region. The molecular structure of one of the complexes [Ru(η6-p-cymene)(Cl)(L2)] (2) was determined by X-ray crystallography. Electrochemical data of all the ruthenium complexes show a two metal centered voltammetric responses with respect to Ag/AgCl at scan rate 100 mV s−1. Further, the complex (2) efficiently catalyzes the oxidation of a wide range of alcohols to their corresponding carbonyl compounds in the presence of N-methylmorpholine-N-oxide (NMO) up to 97%.  相似文献   

5.
p-Cymene complexes MCl26-p-cymene)L [M = Ru, Os; L = P(OEt)3, PPh(OEt)2, (CH3)3CNC] were prepared by allowing [MCl(μ-Cl)(η6-p-cymene)]2 to react with phosphites or tert-butyl isocyanide. Treatment of MCl26-p-cymene)L complexes with 1,3-ArNNN(H)Ar triazene and an excess of NEt3 gave the cationic triazenide derivatives [M(η2-1,3-ArNNNAr)(η6-p-cymene)L]BPh4 (Ar = Ph, p-tolyl). Neutral triazenide complexes MCl(η2-1,3-ArNNNAr)(η6-p-cymene) (M = Ru, Os) were also prepared by allowing [MCl(μ-Cl)(η6-p-cymene)]2 to react with 1,3-diaryltriazene in the presence of triethylamine. p-Cymene complexes MCl26-p-cymene)L reacted with equimolar amounts of 1,3-ArNNN(H)Ar triazene to give both triazenide complexes [M(η2-1,3-ArNNNAr)(η6-p-cymene)L]BPh4 and amine derivatives [MCl(ArNH2)(η6-p-cymene)L]BPh4. A reaction path for the formation of the amine complex is also reported. The complexes were characterised by spectroscopy and X-ray crystallography of RuCl26-p-cymene)[PPh(OEt)2] and [Ru(η2-1,3-p-tolyl-NNN-p-tolyl)(η6-p-cymene){CNC(CH3)3}]BPh4. Selected triazenide complexes were studied as catalysts in the hydrogenation of 2-cyclohexen-1-one and cinnamaldehyde.  相似文献   

6.
A systematic series of η5-monocyclopentadienyliron(II) complexes with substituted oligo-thiophene nitrile ligands of general formula [FeCp(P_P)(NC{SC4H2}nNO2)][PF6] (P_P = dppe, (+)-diop; n = 1-3) has been synthesized and characterized. The electrochemical behaviour of the new compounds was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (β) of the complexes with dppe coligands have been determined by hyper-Rayleigh scattering (HRS) measurements at two fundamental wavelengths of 1.064 and 1.550 μm, to uncover the two-photon resonance effect and to estimate static β values. The obtained overall results are found to be better than for the related η5-monocyclopentadienyliron(II) complexes with p-benzonitrile derivatives. Although an increase of the resonant β at 1.064 μm with increasing number of thiophene units in the conjugated ligand was found (up to 910 × 10−30 esu), the static values β0 remain practically unchanged, as shown by the 1.550 μm measurements. Combined with the electrochemical and spectroscopic data (IR, NMR, UV-vis), this remarkable evolution of β shows that the increase of conjugation length is balanced by a decrease in charge-transfer efficiency.  相似文献   

7.
Nazan Kaloğlu 《Tetrahedron》2019,75(15):2265-2272
Herein, a series of new ruthenium(II) complexes with the general molecular formula [RuCl2(arene)(NHC)], (arene?=?η6-p-cymene, NHC = N-heterocyclic carbene) were synthesized from in situ prepared silver(I)-NHCs by the transmetallation method. These complexes were fully characterized by analytical and spectral methods. Ruthenium(II) complexes were tested as promising catalyst for selective β-C(sp3)-H functionalization of N-methylpiperidine with various aldehydes through hydrogen transfers in presence of external acidic additive. These eco-friendly cross-dehydrogenative couplings enable the production of C(3)-alkylated N-methylpiperidine derivatives without enamines with only carbon dioxide and water as benign by-product.  相似文献   

8.
The polyether bis(alkynes) α,ω-bis(O-propargyl)triethylene glycol and α,ω-bis(O-4-propargyloxyphenoxy)triethylene glycol reacted with [AuCl(SMe2)] in the presence of base to form the corresponding oligomeric gold(I) acetylide complexes (AuCCCH2O(CH2CH2O)3CH2CCAu)n and (AuCCCH2OC6H4O(CH2CH2O)3C6H4OCH2CCAu)n. These digold(I) diacetylide complexes reacted with diphosphine ligands to give macrocyclic digold(I) complexes of the type [Au2(μ-CC)(μ-PP)], where CC is the diacetylide and PP is a diphosphine ligand. These digold(I) complexes bind the cations Li+, Na+, K+ and Cs+, as studied by electrospray mass spectrometry.  相似文献   

9.
《Polyhedron》1999,18(26):3545-3552
Selected ‘3+1’ mixed ligand oxorhenium and oxotechnetium complexes containing the SNS/S donor atom set have been modified by introduction of a bifunctional amine anchor on the p-position of the thiophenolato monodentate ligand. A representative series of complexes containing several tridentate ligands was prepared both at macromolar (Re complexes) and nanomolar (99mTc complexes) amounts. Coupling of these complexes to activated carboxylate groups was performed according to the ‘preformed chelate approach’ using benzoyl chloride as a model molecule. Coupling yields were high both at nanomolar and millimolar metal concentration, as revealed by high-performance liquid chromatographic analysis of 99mTc and Re species adopting parallel radiometric and photometric detection modes. All Re compounds have been characterized by classical analytical methods. In addition, the structures of representative parent ReO[CH3SCH2CH2N(CH2CH2S)2][p-SC6H4NH2] and daughter ReO[CH3SCH2CH2N(CH2CH2S)2][p-SC6H4NHCOC6H5] complexes were solved by X-ray crystallography. Both compounds adopt a distorted trigonal bipyramidal geometry around rhenium, wherein the oxo group and the sulfur atoms of the SNS ligand occupy the equatorial plane and the nitrogen atom and the sulfur of the monothiol are located at the apical positions trans to each other.  相似文献   

10.
The dibenzodioxatetraazamacrocycle [26]pbz2N4O2 was characterised by single crystal X-ray diffraction and the protonation constants of this compound and the stability constants of its copper(II) and lead(II) complexes were determined by potentiometry in water at 298.2 K in 0.10 mol dm−3 in KNO3. Mono- and dinuclear complexes were found for both metal ions, the dinuclear complexes being the main species in the 5–7.5 pH range for copper(II) and 7.5–8.5 for lead(II). As expected the values of the stability constants for the copper(II) complexes are lower than those for related macrocycles containing only nitrogen atoms. The presence of mono- and dinuclear copper complexes was also confirmed by electrospray ionization mass spectrometry. These results suggest that the symmetric macrocyclic cavity of [26]pbz2N4O2 has enough space for the coordination of two metal ions. Additionally, NMR spectroscopy showed that the dinuclear complex of lead(II) has high symmetry. The equilibrium constants of the dinuclear copper(II) complexes and dicarboxylate anions (oxalate, malonate and succinate) were also determined in 0.10 mol dm−3 aqueous KNO3 solution. Only species containing one anion, Cu2HhLA(2+h), were found, strongly suggesting that the anion bridges the two copper(II) ions. The binding constants of the cascade species formed by [Cu2[26]pbz2N4O2(H2O)x]4+ with dicarboxylate anions decrease with the increase in length of the alkyl chain of the anion, a fact which was attributed to a higher conformational energy necessary for the rearrangement of the macrocycle to accommodate the larger anions bridging the two copper(II) centres. The variation of the magnetic susceptibility with temperature of [Cu2(H2[26]pbz2N4O2)(oxa)3] · 4H2O and [Cu2([26]pbz2N4O2)(suc)Cl2] were measured and the two complexes showed different behaviour.  相似文献   

11.
A series of 18-electron alkylruthenium complexes, RuR[κ2(N,N′)-(S,S)-R′SO2NCHPhCHPhNH2](η6-arene) (Ph = C6H5, R′ = p-CH3C6H4 and CH3), bearing a N-sulfonylated diamine ligand was synthesized from the reaction of RuCl[κ2(N, N′)-(S,S)-R′SO2NCHPhCHPhNH2](η6-arene) with alkylzinc reagents, in which transmetalation proceeded smoothly to give the desired alkyl complexes in good yield and selectivity. Although the isolable amine Ru complexes bearing functionalized alkyl ligands were thermally stable, the simple methyl and ethyl Ru complexes underwent intramolecular deprotonation from NH protons to give the amido Ru complexes with release of the alkanes. The reactivity of the alkyl Ru complexes is highly affected by the structures of the arene ligands.  相似文献   

12.
A series of cationic, half-sandwich ruthenium complexes with the general formula [(η6-arene)RuCl(R1S-C6H4-2-CHNR2)]+ (arene = p-cymene or hexamethylbenzene; R1 = CH2Ph, iPr, or Et; R2 = aryl) have been prepared from the reaction of [(η6-arene)RuCl2]2 with various N,S-donor Schiff base ligands derived from 2-(alkylthio)benzaldehyde and several primary amines. All of the ruthenium complexes were characterized by IR, 1H NMR, electrochemistry, and UV/Vis spectroscopies. The p-cymene complexes undergo irreversible oxidations while the hexamethylbenzene complexes undergo quasi-reversible oxidations. The molecular structures of ligand 1a and complexes 4a, 4l, and 5e were determined by X-ray crystallography.  相似文献   

13.
The insertion products [ArCS2Cudppm]2 and [(o-tolylCS2Cu)2dppm]2 (dppm  bis(diphenylphosphino)methane) were isolated after addition of dppm to CS2 solutions of arylcopper(I) (Ar  phenyl, o-, m- and p-tolyl). Another series of complexes, tentatively assigned the formula [Cu6(dppm)2Ar4C4S9], was also isolated. All the complexes were non electrolytes and were characterized by IR and 1H and 31P NMR spectra. In addition to the [ArCS2Cudppm]2 complexes also the related product [(Cudppm)4(CS3)2] was obtained.  相似文献   

14.
The number of active centers C p in the homogeneous complexes LCoCl2 and LVCl3 (L = 2,6-(2,6-R2C6H3N=CMe)2C5H3N; R = Me, Et, t Bu) and the propagation rate constants k p have been determined by the radioactive 14CO quenching of ethylene polymerization on these complexes in the presence of the methylaluminoxane (MAO) activator. For the systems studied, a significant portion of the initial complex (up to 70%) transforms into polymerization-active centers. The catalysts based on the cobalt complexes are single-site, and the constant k p in these systems is independent of the volume of substituent R in the ligand, being (2.4?3.5) × 103 L mol?1 s?1 at 35°C. The much larger molecular weight of the polymer formed on the complex with the tert-butyl substituent in the aryl rings of the ligand compared to the product formed on the complex with the methyl substituent is due to the substantial (~11-fold) decrease in the rate constant of chain transfer to the monomer. At the early stages of the reaction (before 5 min), the vanadium complexes contain active centers of one type only, for which k p = 2.6 × 103 L mol?1 s?1 at 35°C. An increase in the polymerization time to 20 min results in the appearance, in the vanadium systems, of new, substantially less reactive centers on which high-molecular-weight polyethylene forms. The number of active centers C p in the 2,5-tBu2LCoCl2 and 2,6-Et2LVCl3 systems with the MAO activator increases as the polymerization temperature is raised from 25 to 60°C. The activation energies of the chain propagation reaction (E p) have been calculated. The value of E p for complex 2,5-tBu2LCoCl2 is 4.5 kcal/mol. It is assumed that the so-called “dormant” centers form in ethylene polymerization on the 2,6-Et2LVCl3 complex, and their proportion increases with a decrease in the polymerization temperature. Probably, the anomalously high value E p = 14.2 kcal/mol for the vanadium system is explained by the formation of these “dormant” centers.  相似文献   

15.
Silver(I) and N,N'-bis(2-hydroxyethyl)dithiooxamide (H2X) in acidic solutions, form a series of water-soluble polynuclear complexes. These complexes can be represented by two general formulae: H2qAgpXq and H2q-1AgpXq with q=1,2,3 and p=q, q-1.  相似文献   

16.
The coordination chemistry of a series of bis-bidentate ligands with cadmium(II) ions has been investigated. The ligands, containing two N,S-donor chelating (pyrazolyl/thioether) fragments, have afforded complexes of a variety of structural types (dinuclear M2L2 ‘mesocate’ complexes, a one-dimensional chain coordination polymer and a simple mononuclear complex) according to whether the bis-bidentate ligands act as bridges spanning two metal ions, or a tetradentate chelate to a single metal ion. The p-phenylene and m-biphenyl spaced ligands L1 and L3 form dinuclear M2L2 complexes where the ligands are arranged in a ‘side-by-side’ fashion. In contrast the m-phenylene spaced ligand L2 forms a one-dimensional coordination polymer where the ligands adopt a highly folded conformation. The 1,8-naphthalene spaced ligand L4 adopts a tetradendate chelating mode and affords a simple mononuclear complex.  相似文献   

17.
The transformations of platinum(II) and platinum(IV) complexes with inner-and outer-sphere ligands by the action of (+)-α-pinene and (+)-limonene were studied. Reduction of the metal complex is the main process whose rate increases in the following outer-sphere ligand series: (Me2SO)2H+ < Et3NH+ < K? < H+. The reaction of K2PtCl4 with α-pinene gave cis-terpine monohydrate and dichloro-η4-[p-mentha-1,8(9)-diene]platinum(II), and their structure was proved by X-ray analysis. The complex belongs to monoclinic crystal system, the Pt-Cl and Pt-C bonds therein have different lengths, the ClPtCl angle is 85.88°, and the C=C bond plane is orthogonal to the square coordination core. Dichloro-η4-[p-mentha-1,8(9)-diene]-platinum(II) was tested as catalyst in the hydrosilylation of acetophenone with diphenylsilane.  相似文献   

18.
The reaction of isocyanic acid with ethylene glycol associates was studied by the B3LYP/6–311++G(df,p) quantum chemical method. The reaction mechanism includes formation of pre- and post-reaction complexes and cyclic asymmetric late transition states. The energy barrier decreases with increase in the degree of association of ethylene glycol.  相似文献   

19.
Lanthanide p-toluene sulphonic acid (ptsa) complexes were prepared for La, Pr, Nd, Sm, Eu, Dy, Ho, Er and Yb, and found to exist as Ln(ptsa)3. Conductivity studies of La(ptsa)3 in DMSO and DMF suggest 1:2 and, possibly, 1:1 electrolyte behaviour in these solvents, respectively. NMR lanthanide-induced chemical shifts (LIS) for aromatic protons in (ptsa)? and methyl protons in DMSO, were measured for all complexes as a function of the [Ln3+[DMSO] in a medium consisting of CCl4, DMSO, and CH3CN. Analysis of the LIS data suggests a change in (ptsa)? coordination round Ln3+ across the lanthanide series.  相似文献   

20.
Hydrazine complexes [MCl(η6-p-cymene)(RNHNH2)L]BPh4 (16) [M = Ru, Os; R = H, Me, Ph; L = P(OEt)3, PPh(OEt)2, PPh2OEt] were prepared by allowing dichloro complexes MCl26-p-cymene)L to react with hydrazines RNHNH2 in the presence of NaBPh4. Treatment of ruthenium complexes [RuCl(η6-p-cymene)(RNHNH2)L]BPh4 with Pb(OAc)4 led to acetate complex [Ru(κ2–O2CCH3)(η6-p-cymene)L]BPh4 (7). Instead, the reaction of osmium derivatives [OsCl(η6-p-cymene)(CH3NHNH2)L]BPh4 with Pb(OAc)4 afforded the methyldiazenido complex [Os(CH3N2)(η6-p-cymene)L}]BPh4 (8). Treatment with HCl of this diazenido complex 8 led to the methyldiazene cation [OsCl(CH3NNH)(η6-p-cymene)L}]+ (9+). The complexes were characterised spectroscopically and by X-ray crystal structure determination of [OsCl(η6-p-cymene)(PhNHNH2){PPh(OEt)2}]BPh4 (6b) and [Ru(κ2–O2CCH3)(η6-p-cymene){PPh(OEt)2}]BPh4 (7b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号