首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary N-Cyano-N-methyl-N(2-[(5-methyl-1H-imidazol-4-yl)-methylthio] ethyl) guanidine cimetidine (CM), complexes with CoII, NiII and CuII are described. The compounds are of stoichiometry [M(CM)2]SO4 · nH2O [M = CoII, NiII or CuII; n = 3,3 or 4, respectively], [M(CM)2](ClO4)2 [M = CoII or NiII], [M(CM)2]Cl2 · nH2O [M=CoII, NiII or CuII; n = 1, 2, or 2, respectively] and [Cu(CM)SO4] · 2H2O. The electronic spectra of the compounds in solid state, magnetic susceptibilities and i.r. and e.p.r. spectra were studied. Octahedral environments are proposed for the complexes: [M(CM)2]SO4·nH2O, [M(CM)2](ClO4)2, [Ni(CM)2]Cl2 · 2H2O, [Cu(CM)2]Cl2 · 2H2O and [Cu(CM)SO4] · 2H2O and a tetrahedral structure for [Co(CM)2]Cl2 · H2O.  相似文献   

2.
The reaction of Cu(ClO4)2·6H2O, NaAsF6 and excess pyrazole yields hexakis­(pyrazole‐κN2)copper(II) bis­(hexa­fluoroarsenate), [Cu(C3H4N2)6](AsF6)2 or [Cu(pzH)6](AsF6)2 (pzH is pyrazole), (I). The analogous hexakis­(pyrazole‐κN2)copper(II) hexafluorophosphate perchlorate complex, [Cu(C3H4N2)6](PF6)1.29(ClO4)0.71 or [Cu(pzH)6](PF6)1.29(ClO4)0.71, (II), is obtained in a similar fashion, using KPF6 in place of NaAsF6. Both compounds contain the hitherto unknown [Cu(pzH)6]2+ complex cation, in which the copper(II) ion lies at the center of a regular octahedron of coordinated N atoms. The cation has crystallographically imposed symmetry. The X‐ray data indicate that the lack of the expected distortion can be accounted for by the presence of either static Jahn–Teller disorder or dynamic Jahn–Teller distortion.  相似文献   

3.
《Polyhedron》1986,5(9):1405-1411
Copper(II) coordination compounds of several CuA2 salts (A = PF6, BF4, ClO4, CF3SO3 or NO3) with 5,7-dimethyl[1,2,4]triazolo[1,5-a]pyrimidine (dmtp) as a ligand have been studied. The crystal structure of [Cu(dmtp)4(H2O)2](PF6)2 is described. This compound is monoclinic, space group P21/c, a = 11.826(2) Å, b = 9.463(2) Å, c = 17.673(3) Å, β = 97.50(1)°, Z = 2, dcalc. = 1.66 Mg m−3, and has been refined to a final discrepancy factor (R) of 0.0382 based on 2316 reflections. The structure consists of PF6 anions and centrosymmetric mononuclear [Cu(dmtp)4(H2O)2]2+ cations, Cu2+ being coordinated by four equatorial N(3)-bonded dmtp molecules with CuN = 2.019 and 2.050 Å, and by two axial water molecules with CuO = 2.650 Å. The water molecules form intramolecular hydrogen bonds with the dmtp N(4) atoms.  相似文献   

4.
The compound [Cu(TSC)2](H2SSal)2 (I) has been synthesized (TSC is thiosemicarbazide, H3SSal is 5-sulfosalicylic acid) and studied by IR spectroscopy and X-ray crystallography. The crystals of I are triclinic: a = 6.728(2) Å, b = 7.772(1)Å, c = 11.600(6)Å, α = 88.60°, β = 86.68(3)°, γ = 79.22(4)°, V = 594.8(4)Å3, Z = 2, space group \(P\bar 1\). The structural units of the crystal are the centrosymmetric [Cu(TSC)2]2+ cation, in which the Cu atom is in a square-planar coordination formed by the bidentate chelating (N,S) TSC ligands, and (H2SSal)? anions (Cu(1)-N(3), 2.013(3) Å; Cu(1)-S(1), 2.275(1) Å). The coordination polyhedron of the Cu(1) atom is completed to a prolate tetragonal bipyramid (4 + 2) by Cu-O bonds (2.810(3) Å) of the sulfate moieties of both anions, which form together with hydrogen bonds the [Cu(TSC)2(H2SSal)2] supermolecule. The complex cations are packed in layers and alternate with anion-containing layers. Hydrogen bonding and π?π stacking interactions are responsible for formation of supramolecular layer ensembles.  相似文献   

5.
A new complex compound, bis(2,2,2-cryptand potassium) tetrakis(isocyanato)cuprate(II), 2[K(Crypt-222)]+ [Cu(NCS)4]2? was prepared and its crystal structure was studied by X-ray structural analysis. The structure includes one symmetrically independent complex cation [K(Crypt-222)]+ of a guest-host type and independent one half of [Cu(NCS)4]2? anion. Through the center of the anion passes crystallographic symmetry axis 2, the approximate point symmetry of the anion is D 2, while the approximate point symmetry of the complex cation is D 3. The coordination polyhedron of the [Cu(NCS)4]2? anion (four N atoms) conjugated with Cu2+ cation is a nonplanar square considerably screwed into a flattened tetrahedron. The K+ cation (coordination number 8) of the complex cation [K(Crypt-222)]+ is coordinated by all eight heteroatoms (6O + 2N) of the 2,2,2-cryptand ligand, and its coordination polyhedron can be described as bis-basecentered trigonal prism slightly screwed into an anti-prism.  相似文献   

6.
The crystal structure of the title complex, [Cu(C7H8N4)2(H2O)2](ClO4)2, consists of a discrete centrosymmetric [Cu(C7H8N4)2(H2O)2]2+ cation and two perchlorate anions. The CuII centre is six‐coordinated by four N donors from the two pyrazole rings [Cu—N 1.998 (2) and 2.032 (3) Å] and two O atoms from the water mol­ecules occupying the apical sites [Cu—O 2.459 (3) Å]. The coordination geometry of the complex can be described as octahedral. There is a unique three‐dimensional network in which the perchlorate units are linked by a combination of strong O—H?O and weak C—H?O hydrogen bonds.  相似文献   

7.
Reactions of copper(II) sources with 1,2-bis(4-pyridyl)ethane (bpe) yielded metal-organic networks with diverse topologies and dimensionalities. Compounds [Cu(bpe)2(dmf)2]n(ClO4)2n·2ndmf (1·2ndmf), [Cu(bpe)2(dmf)2]n(ClO4)2n·3.5ndmf (2·3.5ndmf), [Cu(bpe)2(NO3)2]n·2nH2O (4·2nH2O) and [Cu2(bpe)(O2CMe)4]n·0.7nH2O (5·0.7nH2O) have been isolated by altering the copper(II) source, the reaction solvent and the crystallization process. Compounds 1·2ndmf and 2·3.5ndmf consist of cationic [Cu(bpe)2(dmf)2]2+ repeating units assembled to 1D and 2D (4,4) networks, respectively, and represent supramolecular isomers due to the conformational isomerism of the bridging bpe molecules. Compound 4·2nH2O consists of neutral mononuclear [Cu(dpe)2(NO3)2] repeating units assembled to inclined interpenetrating (4,4) sheets describing an overall entanglement that is 3D in nature, and compound 5·0.7nH2O consists of neutral dinuclear repeating units assembled to cross-linked 1D chains.  相似文献   

8.
The title mixed-metal compound, [Cu(C2H8N2)2(H2O)2][Ni(C2H8N2)3]2(C10H6O6S2)3·4H2O, was obtained during investigations of the porous frameworks constructed by amino-coordinated metal complex cations and large organic anions. All three naphthalene-2,6-di­sulfonate anions and the [Cu(en)2(H2O)2]2+ cation are located on crystallographic inversion centers and assemble into an extended two-dimensional network through intermolecular hydrogen bonds, creating cavities in which the [Ni(en)3]2+ cations and water mol­ecules are included.  相似文献   

9.
Summary The electronic absorption and e.s.r. spectra of a crystal of the title compound [Cu(H2O)2 (C4H5O5)2] were recorded and experimental results are discussed quantitatively, using ligand field theory and the radial wave function of bound CuII. The electronic structure of the compound is consistent with its crystal structure.  相似文献   

10.
Structures having the unusual protonated 4‐arsonoanilinium species, namely in the hydrochloride salt, C6H9AsNO3+·Cl, (I), and the complex salts formed from the reaction of (4‐aminophenyl)arsonic acid (p‐arsanilic acid) with copper(II) sulfate, i.e. hexaaquacopper(II) bis(4‐arsonoanilinium) disulfate dihydrate, (C6H9AsNO3)2[Cu(H2O)6](SO4)2·2H2O, (II), with copper(II) chloride, i.e. poly[bis(4‐arsonoanilinium) [tetra‐μ‐chlorido‐cuprate(II)]], {(C6H9AsNO3)2[CuCl4]}n , (III), and with cadmium chloride, i.e. poly[bis(4‐arsonoanilinium) [tetra‐μ‐chlorido‐cadmate(II)]], {(C6H9AsNO3)2[CdCl4]}n , (IV), have been determined. In (II), the two 4‐arsonoanilinium cations are accompanied by [Cu(H2O)6]2+ cations with sulfate anions. In the isotypic complex salts (III) and (IV), they act as counter‐cations to the {[CuCl4]2−}n or {[CdCl4]2−}n anionic polymer sheets, respectively. In (II), the [Cu(H2O)6]2+ ion sits on a crystallographic centre of symmetry and displays a slightly distorted octahedral coordination geometry. The asymmetric unit for (II) contains, in addition to half the [Cu(H2O)6]2+ ion, one 4‐arsonoanilinium cation, a sulfate dianion and a solvent water molecule. Extensive O—H…O and N—H…O hydrogen bonds link all the species, giving an overall three‐dimensional structure. In (III), four of the chloride ligands are related by inversion [Cu—Cl = 2.2826 (8) and 2.2990 (9) Å], with the other two sites of the tetragonally distorted octahedral CuCl6 unit occupied by symmetry‐generated Cl‐atom donors [Cu—Cl = 2.9833 (9) Å], forming a two‐dimensional coordination polymer network substructure lying parallel to (001). In the crystal, the polymer layers are linked across [001] by a number of bridging hydrogen bonds involving N—H…Cl interactions from head‐to‐head‐linked As—O—H…O 4‐arsonoanilinium cations. A three‐dimensional network structure is formed. CdII compound (IV) is isotypic with CuII complex (III), but with the central CdCl6 complex repeat unit having a more regular M —Cl bond‐length range [2.5232 (12)–2.6931 (10) Å] compared to that in (III). This series of compounds represents the first reported crystal structures having the protonated 4‐arsonoanilinium species.  相似文献   

11.
The thermal decomposition studies on 4-methylpiperazine-1-carbodithioic acid ligand (4-MPipzcdtH) and its complexes, viz. [M(4-MPipzcdtH)n](ClO4)n (M=Fe(III) when n=3; M=Co(II), Cu(II) when n=2) and [Zn(4-MPipzcdtH)2]Cl2 have been carried out using non-isothermal techniques (TG and DTA). Initial decomposition temperatures (IDT), indicate that thermal stability is influenced by the change of central metal ion. Free acid ligand exhibits single stage decomposition with a sharp DTA endotherm. Complexes, [M(4-MPipzcdtH)n](ClO4)n undergo single stage decomposition with detonation and give rise to very sharp exothermic DTA curves while the complex [Zn(4-MPipzcdtH)2]Cl2 shows three-stage decomposition patterns. The kinetic and thermodynamic parameters, viz. the energy of activation E, the frequency factor A, entropy of activation S and specific rate constant k, etc. have been evaluated from TG data using Coats and Redfern equation. Based upon the results of the differential thermal analysis study, the [M(4-MPipzcdtH)n](ClO4)n complexes have been found to possess characteristic of high energy materials.  相似文献   

12.
By means of X-ray diffraction the chain structure of [Cu(l-Arg)2]Hg2Cl6 (monoclinic, a = 10.2348(9) Å, b = 9.1386(7) Å, c = 14.8521(14) Å, β = 97.455(11)°, space group P21) is established. The chains are formed by square-planar [Cu(l-Arg)2]2+ cations of the type trans-[Cu(N)2(O)2] (l-Arg is the zwitter-ion of arginine; Cu-N 1.992 Å and 1.938(6) Å, Cu-O 1.953 Å and 1.967(4) Å) that are bonded to two adjacent binuclear [Cl2Hg(μ-Cl)2HgCl2]2? ions through its clorine atoms Cl (Hg-Cl bonds are within 2.34–2.78 Å). With these two additional Cu…Cl contacts Cu adopts the geometry of an elongated octahedron with two apical Cl (Cu-Cl 2.961 Å and 3.064(3) Å).  相似文献   

13.
The title bis(1,3,4‐trimethylpyridinium) tetrahalidocuprate(II) structures, (C8H12N)2[CuCl4], (I), and (C8H12N)2[CuBr4], (II), respectively, consist of flattened [CuX4]2− tetrahedral complex anions and planar 1,3,4‐trimethylpyridinium cations. Chloride compound (I) is a rare example of an A2CuCl4 structure with an elongated unit cell in the polar space group Fdd2. The [CuCl4]2− anions have twofold rotational symmetry and are arranged in distorted hexagonal close‐packed (hcp) layers, which are interleaved with layers of cations, each in a four‐layer repeat sequence, to generate the elongated axis. The organic cations stack along [101] or [10] in alternating layers. The methyl groups meta on the cation ring and the larger of the trans Cl—Cu—Cl angles both face the same direction along the polar axis and are the most prominent features determining the polarity of the structure. Bromide compound (II) crystallizes in a centrosymmetric structure with a similar layer structure but with only a two‐layer repeat sequence. Here, symmetry‐inequivalent cations are segregated into alternating layers with cations, forming hcp layers of inversion‐related cation pairs in one layer and parallel stacks of cations in the other. The change in space group when the larger Br ion is present suggests that the 1,3,4‐trimethylpyridinium ion has a minimal size to allow the Fdd2 A2CuX4 structure type.  相似文献   

14.
The title compound, potassium bis(ethylenediamine‐N,N′)copper(II) hexacyanoferrate(III), K[Cu(C2H8N2)2]‐[Fe(CN)6], contains [Cu(en)2]2+ and [Fe(CN)6]3? complex ions, where en is ethylenediamine. The FeIII and K+ ions lie on twofold axes and the CuII atom lies on an inversion center. The [Cu(en)2]2+ ion has square‐planar coordination with a mean Cu—N distance of 1.992 (2) Å and the [Fe(CN)6]3? ion has distorted octahedral coordination with a mean Fe—C distance of 1.947 (2) Å.  相似文献   

15.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

16.
The title compound, [Co(H2O)6](CH3C6H4SO3)2, has a structure where the metal atom is surrounded by six mol­ecules of water forming the cation and the anion is deprotonated 4‐toluene­sulfonic acid. The Co atom is in a nearly regular octahedral coordination geometry, with Co—O distances between 2.0529 (14) and 2.0810 (16) Å, and angles ranging from 87.25 (9) to 92.75 (9)°. The supramolecular structure consists of parallel layers of cations and anions. The anions are arranged with their sulfonate groups directed towards the cation layer in an alternating fashion and form hydrogen bonds with the water mol­ecules of the cation.  相似文献   

17.
[Zn(H2O)6](N-inicO)2 is an ionic compound made up of hexaaqua metal cations and isonicotinate N-oxide anions. It forms an isomorphic series with the corresponding Mg2+, Fe2+, Co2+ and Ni2+ compounds.In [Cd(N-inicO)2(H2O)2]n complex, coordination takes place through the NO oxygen and one of the (COO) oxygens with ligand forming thus a double bridge between Cd2+ ions. The structure is an endless chain stretching diagonally through the unit cell.The coordination polyhedron in both compounds is almost undistorted octahedron.  相似文献   

18.
The title complex, [CaCu(C5H6O4)2(H2O)2]n, is the first heterobimetallic complex based on a substituted malonate dianion. The CuII cation and two independent 2,2‐dimethylmalonate (or 2,2‐dimethylpropanedioate) dianions build up a robust dianionic [Cu(C5H6O4)2]2− complex, which acts as a building block to coordinate to four Ca2+ cations. Each CuII centre is in a four‐coordinate square plane of dimethylmalonate O atoms, while each CaII atom is in an eight‐coordinate distorted bicapped trigonal–prismatic environment of six O atoms from four different dimethylmalonate groups and two water molecules. This arrangement creates a two‐dimensional layer connectivity of the structure. The dianionic [Cu(C5H6O4)2]2− units are involved in different intermolecular hydrogen‐bonding interactions with water molecules via the formation of hydrogen‐bonded rings of graph sets R12(8) and R(6) within this layer. The crystal was nonmerohedrally twinned by rotation about [011] with a major twin volume fraction of 0.513 (3).  相似文献   

19.
Synthesis of [Cu(m-HBH)2(OH2)2](NO3)2·2H2O, where m-HBH = C7H8O2N2 (3-hydroxybenzoylhydrazine), is described. The structure of the compound was studied by X-ray phase analysis and IR spectroscopy; crystal data are a = 57.415(6) Å, b = 19.760(2) Å, c = 7.586(2) Å; Fdd 2, Z = 16, R(F) = 0.053. The compound consists of [Cu(m-HBH)2(OH2)2]2+ complex cations, NO 3 ? anions, and two water molecules. The similarity between the IR spectra of Cu(m-HBH)2(NO3)2·nH2O and Co(m-HBH)2(NO3)2·5H2O, element analysis data, and crystal data obtained at the first stage of X-ray analysis show that the structures and compositions of these compounds are identical relative to the type of surroundings of the central atom. In contrast to the cobalt compound [Co(m-HBH)2(OH2)2](NO3)2·3H2O, in which the cobalt atom has a nearly regular octahedron as a coordination polyhedron, the copper(II) compound has a square bipyramid around the copper atom; c.n. is 6 = 4 + 2 (planar distances: 2.013(2) Å, 2.021(2) Å, 2.033(3) Å, 2.087(3) Å; axial distances: 2.367(3) Å, 2.374(3) Å) and lacks one crystallization water molecule.  相似文献   

20.
New carboxylate platinum(II) complexes: syn and anti isomers of Pt(phen)(OOCMe)2 molecular complex, [Pt(phen)(NCMe)2](O3SCF3)2, as well as unusual sandwich complex [Pt(phen)2]2+ · 2syn-[Pt(phen)(OOCMe)2] where [Pt(phen)2]2+ cation is inserted between two syn-Pt(phen)(OOCMe)2 molecules were synthesized and structurally characterized by X-ray diffraction analysis. As distinct from syn- and anti-Pt(phen)(OOCMe)2 and [Pt(phen)(NCMe)2](O3SCF3)2 complexes with flat phenanthroline ligand, the phen ligands in [Pt(phen)2]2+ cation have a curved configuration. Comparative DFT analysis of geometry of model structures phen, phen+, phenH+, and [Ptphen2] n+ (n = 1, 2) showed that electron removal from phen molecule had no effect on its geometry in both free state and platinum(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号