首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replacing nickel atoms by cooper atoms in the ferromagnetic RNi compounds with the FeB-type structure introduces negative interactions opposed to the positive ones. The strong magnetocrystalline anisotropy leads to transverse wave magnetic structures which are observed with terbium, holmium and erbium. While this structure is stable only just below the Néel temperature for the erbium compounds, it remains stable until very low temperatures for the terbium and holmium ones. This behaviour, which depends on the rare earth being a Kramers or non Kramers ion, is interpreted by studying the effect of the low symmetry crystal field in these compounds. The stability of a transverse wave magnetic structure at 10 K is an example of magnetism induced by the exchange field.  相似文献   

2.
The generation of ultrasound in semi-infinite, collinear, two-sublattice antiferromagnetic metals is investigated theoretically. Two cases are considered: 1) when relaxation in the magnetic subsystem is so rapid that variations of the ferromagnetism and antiferromagnetism vectors cannot keep pace with the variation of the displacement vector and the electromagnetic field vectors; 2) when the opposite is true. It is shown for the first time that in either case only transverse sound is excited at low temperatures in zero static magnetic field, and only longitudinal sound is excited at high temperatures in the vicinity of the Néel point. It is also shown that in antiferromagnets, as opposed to ferromagnets, linear sound generation takes place in zero static magnetic field, and the efficiency of contactless sound generation is generally weaker. Fiz. Tverd. Tela (St. Petersburg) 39, 905–907 (May 1997)  相似文献   

3.
The longitudinal acoustic wave velocity and attenuation in BiFeO3 ceramics have been measured by ultrasonic pulse-echo technique at a frequency of 10 MHz in the temperature range from 4.2 K to 830 K. The anomalies observed in the sound velocity and attenuation behavior versus temperature are attributed to the assumed relaxation in the temperature range 200–500 K and antiferromagnetic phase transition at higher temperatures. Order parameter fluctuations along with magnetostriction are discussed as the factors determining the acoustic wave velocity anomaly in the vicinity of the antiferromagnetic phase transition point.  相似文献   

4.

Electrical resistivity measurements performed on a single crystal of erbium as a function of temperature and hydrostatic pressure have provided a preliminary p - T phase diagram. The results have been interpreted in terms of a model for the magnetic structures of Er deduced from neutron diffraction studies at ambient pressure. This model predicted the existence of a magnetic structure with a wave vector of Q =2/7 c * at 4.2 K, when the applied pressure is larger than 3 kbar. This paper reports a neutron diffraction study of erbium made in the temperature range of 4 to 100 K, at pressures between 0.5 and 6 kbar. We have observed the predicted suppression of the low temperature conical ferromagnetic phase and the emergence of a new phase with Q =8/33 c *. The neutron diffraction measurements has enabled us to identify the various phases that develop from the cycloidal phases previously observed at atmospheric pressure.  相似文献   

5.
With a view to investigate the elastic behavior of Nd0.67A0.33MnO3 (where A = Ca, Sr, Ba, Pb) manganite system, the samples were prepared by the sol gel method. After characterizing the samples structurally, a systematic investigation of ultrasonic longitudinal and transverse sound velocities of all the samples was undertaken by pulse transmission technique in the temperature range, 100-300 K. It has been found that all the elasticity parameters, including Debye temperature, are found to increase continuously with increasing ionic radii of the dopant ion. All the samples are also found to exhibit anomalies in both the longitudinal and transverse velocities near their ferro to para magnetic transition (TC) temperatures. Apart from this, Nd0.67Ca0.33MnO3 sample is also found to exhibit, a transition at its charge ordering temperature (Tco). An explanation for the observed elastic anomalies based on a mean field theory has been given.  相似文献   

6.
A. I. Matveev 《Technical Physics》2012,57(12):1646-1655
The formation of a transverse wave with a phase velocity lower than the velocity of light, which can exist in an equilibrium plasma without a slow-wave structure in zero magnetic field, is described. It involves the transformation of a transverse wave with trapped electrons, traveling along the magnetic field, into a slow transverse wave after the removal of the magnetic field. During the evolution of the wave with trapped electrons, the magnetic induction decreases very slowly in the direction of the wave propagation. As a result, the velocity at which electrons are in resonant interaction with the wave increases; therefore, the electrons fall to the bottom of potential wells. Under the influence of the trapped electrons, the phase velocity of the wave decreases and becomes lower than the velocity of light. It becomes equal to the velocity at which the electrons are in resonance interaction with the wave at the instant when the magnetic field vanishes. It is demonstrated that a transverse wave with a velocity lower than the velocity of light can exist in an equilibrium plasma even after the magnetic field vanishes; in this case, the flow of trapped electrons serves as a slow-wave structure.  相似文献   

7.
The acoustical, resistive, and magnetic properties of a La0.75Sr0.25MnO3 lanthanum manganite single crystal are investigated in the temperature range involving the second-order magnetic phase transition. The acoustical measurements are performed by the pulse-echo method in the frequency range 14–90 MHz. It is found that, as the temperature decreases, the velocity of a longitudinal acoustic wave propagating along the [111] axis in the single crystal drastically increases at temperatures below the critical point of the magnetic phase transition. No dispersion of the acoustic velocity is revealed. A sharp increase in the acoustic velocity is accompanied by the appearance of an acoustical absorption peak. The observed effects are discussed with due regard for the interaction of acoustic waves with the magnetic moments of the manganese ions.  相似文献   

8.
Equations of motion for a locally nonequilibrium liquid with internal rotation are derived, and the thermospin effect is considered. It is demonstrated that high-frequency transverse coupled waves of linear velocity, angular velocity of internal rotation, and temperature may propagate a liquid with internal rotation. A dispersion relation and a frequency dependence of the damping ratio are deduced. Comparison between theoretical and experimental values of the transverse sound velocity dispersion shows their satisfactory agreement. Low-frequency transverse waves do not penetrate into the liquid: they decay over a distance on the order of the wavelength. It is shown that frequencies and their corresponding wavenumbers exist in a liquid with internal rotation at which either waves do not decay or a phase shift in the skin layer is absent. It is found that the excitation spectrum may contain a cutoff frequency or an energy gap due to interaction between the linear and angular velocity fields. The dispersion and damping ratio for the coupled waves near synchronism points, where uncoupled waves resonantly interact with each other, are determined.  相似文献   

9.
E. P. Potanin 《Technical Physics》2006,51(12):1586-1590
Resonance rf heating of gadolinium plasma ions is calculated in the configuration when an electric field travels along a permanent magnetic field and simultaneously rotates in the direction normal to the latter. Two model functions are taken as initial ion distribution functions over longitudinal velocities: one is a linear function of the velocity in the low velocity range and the other is a shifted semi-Maxwellian function. The ion transverse velocity distribution function is calculated under the assumption that the initial “transverse” distribution function is Maxwellian with a temperature of 5 eV. Ion fluxes toward collector plates are calculated by integrating the total distribution function over the allowed ranges of longitudinal and transverse velocities and transverse coordinates of the guiding center of the ions before the collector. The calculation is performed as applied to the 157Gd target isotope and its two nearest neighbors. The effect of the longitudinal temperature on the width of the heating efficiency resonance line and of the longitudinal magnetic field on the ion heating selectivity is studied. Also, the influence of the longitudinal wavenumber of the warming traveling electric field on the selectivity of an ion cyclotron resonance reactor is investigated. The heating efficiency is estimated from the frequency dependence of the fraction of ions heated to an energy above a given value.  相似文献   

10.
Effects of temperature on magnetic phase separation and on the parameters of spin-spiral waves are studied. The study is performed using the two-dimensional single-band Hubbard model and the Hubbard-Stratonovich transformation. Both commensurate (antiferromagnetic, ferromagnetic) and incommensurate (spiral) magnetic phases are considered. The problem is solved using the static approximation with allowance for transverse fluctuations of the magnetic moment. It is shown that the temperature significantly affects the collinear and spiral magnetic phases. With an increase in the temperature, the phase-separation region near the half-filling is sufficiently reduced and substituted by the antiferromagnetic phase. The results are used for the interpretation of the magnetic properties of cuprates.  相似文献   

11.
The longitudinal acoustic wave velocity and attenuation in PbFe1/2Ta1/2O3 ceramics have been measured by pulse-echo technique in the temperature range from 4.2 to 530 K. The anomalies observed in the sound velocity and attenuation behavior versus temperature were correlated with Burns temperature, temperature range of the coexistence of relaxor ferroelectric and antiferromagnetic states, and a suggested second antiferromagnetic phase transition at low temperatures.  相似文献   

12.
The acoustical and dielectric properties of glycine phosphite crystals are investigated in the temperature range of a ferroelectric phase transition. The acoustic anomalies for longitudinal waves along the X, Y, and Z crystallographic axes (where Y is the spontaneous polarization axis) are analyzed in the framework of the Landau theory. It is shown that pronounced acoustic anomalies of the velocity can be quantitatively described within the pseudoproper ferroelectric phase transition model with due regard for the long-range dipole-dipole interaction. For longitudinal acoustic waves propagating along the polar crystal axis, the striction anomaly of the velocity is only partly suppressed by the long-range dipole-dipole forces and an abrupt jump in the velocity is observed in the vicinity of the phase transition. The temperature coefficients of the velocity in the paraphase are determined. The striction contribution and the contributions biquadratic in the order parameter and in the strain to the velocity anomaly are separated.  相似文献   

13.
A theory of rotationally invariant spin-lattice interactions in rare earth systems is presented. It is shown that rotational invariance to leading order is ensured only if rotational interactions of first and second order in the displacements are included simultaneously in the spin-lattice Hamiltonian. The rotational second-order interactions yield effects which are as large as those of the linear rotational interaction. It is pointed out that a corresponding statement should hold also for pure strain interactions.The phonon Green's function is calculated for the paramagnetic phase of rare earth systems. It is found that in an applied magnetic field the rotational interactions cause measureable changes of the phonon dispersion and the sound velocity even for cubic symmetry. These effects turn out to be of the same order of magnitude as the conventional field-dependent strain effects and are qualitatively different from the latter. The results of our theory are illustrated by the example of SmSb, and quantitative predictions for the transverse sound velocities are given.  相似文献   

14.
A collisional plasma flow moving along a magnetic field at a velocity lower than the speed of sound is considered. It has been found that stationary small perturbations increase downstream in the flow. The mechanism of the increase is related to the fact that subsonic ideal-plasma flows respond to external perturbations primarily by a change in the pressure of the plasma. As a result, the pressure under perturbation of the velocity changes so that the stationary flow is decelerated and accelerated if the force is directed along and against the velocity, respectively. This phenomenon can be explained under the assumption that the effective mass of the plasma is negative. If the velocity of the flow is inhomogeneous in the transverse direction, the viscosity force plays a role of the external perturbing force. In this case, the effective transverse viscosity coefficient, which should be treated as negative, can be renormalized instead of the effective mass. The sign of the effective specific heat or the effective transverse thermal conductivity coefficient changes similarly if the velocity of the flow is lower than the speed of sound but is higher than the thermal velocity of ions calculated from the sum of the ion and electron temperatures. A downstream increase in the stationary perturbations is called in this work spatial instability. The downstream growth rate has been determined. The numerical analysis of the evolution of perturbations illustrates the development of the spatial instability of subsonic collisional plasma flows moving along the magnetic field.  相似文献   

15.
Detection of chemical damage in concrete using ultrasound   总被引:1,自引:0,他引:1  
This research deals with a non-destructive method for characterizing the degraded cover of concrete structures using high-frequency ultrasound (0.5-1 MHz). Although such a frequency range is unusual in civil engineering, it is well suited to the kind of defect to be detected, as it corresponds to a thin near-to-surface layer with increased porosity and density of microcracks. In order to assess the feasibility of detecting concrete cover degradation, velocity and attenuation measurements were made on both halves of a concrete slab. One half was immersed into an acid solution for 15-45 days, while the other half remained sound. These measurements were made for longitudinal, transverse and surface waves. The results obtained show a 23% decrease of ultrasonic pulse velocity and a 1000% increase of attenuation in the degraded material relative to the sound material. It is thus possible to detect and characterize concrete cover degradation using high-frequency ultrasound. Although attenuation measurements in heterogeneous media are difficult, their sensitivity to degradation is very high.  相似文献   

16.
The dielectric, ferroelectric and non-linear optical behavior of erbium tartrate dihydrate crystals is studied. The dielectric constant has been measured as a function of temperature and frequency. The crystals of erbium tartrate dihydrate show an anomalous dielectric behavior as a function of temperature: the dielectric constant increases with temperature, attains a peak around 235 °C and then decreases as the temperature goes beyond 235 °C. The dielectric anomaly at 235 °C is suggested to be due to ferroelectric phase transition brought about in the material. The experiment on polarization versus electric field shows a hysteresis loop thereby establishing the ferroelectric nature of erbium tartrate dihydrate. The results of thermal study show that the material is thermally stable up to a temperature of about 240 °C. The non-linear optical study shows that erbium tartrate dihydrate has second harmonic generation efficiency comparable to that of potassium dihydrogen phosphate (KDP).  相似文献   

17.
水声材料横波声速和衰减系数参量源法测量系统   总被引:1,自引:0,他引:1  
李水  唐海清 《声学学报》2005,30(4):317-323
提出了测量10-100 kHz频段水声材料平均横波声速和衰减系数的测量系统,系统具有低频、小尺寸、窄波束的特点。测量装置应用截断参量源作为声源,结合了精密的坐标系统。在对平板声压透射系数的平面波模型进行理论修正和实验研究的基础上,测量平板样品的透射系数(插入损失)的频谱和角谱,并采用曲线拟合方法来估计样品在测量频段的平均横波声速和衰减系数。在2 m×1 m×1.5 m消声水槽中,对一些典型样品(尺寸500 mm×600 mm)进行了测量实验,结果表明,水声材料样品在声波不同入射角时的声学性能有较大差异,不能用声波垂直入射时的声学性能数据代替;横波声速和衰减系数是评定水声材料声学性能的重要参数,尤其在声波斜入射情况下;在研究材料构件或复杂器件的声学性能时它们也是必不可少和不能不考虑的。实验还验证了测量方法和系统的可行性,也表明仅在这一频段的测量还远不能满足水声工程的实际需求,有必要将测量方法应用扩展到更低或更高的频段。  相似文献   

18.
We report results of the ultrasonic investigation of Ba1-xKxBiO3 superconducting (SC) single crystals for two potassium concentrations and in a wide temperature range including the normal and the SC states. An instability of the crystal lattice that develops above the superconducting phase transition leads to a softening of both the transverse c44 and the longitudinal c11 modes at temperatures between 200 K and 50 K. In the case of Ba0.65K0.35BiO3 a pronounced hysteresis was discovered. Low temperature X-ray powder diffraction analysis does not reveal any change of the cubic structure in the samples within a resolution of our X-ray technique. The softening of the elastic moduli, the hysteresis, the maximum in the attenuation of sound along with the possible short- (or long-) range structural distortion can be explained qualitatively in a simple model by assuming a coupling of the acoustic modes with the anharmonic oscillations of BiO6 octahedra. Some weak anomalies are discovered in the velocity of the longitudinal sound in the vicinity of the superconducting phase transition. Received 25 June 1999 and Received in final form 14 February 2000  相似文献   

19.
The longitudinal sound velocity in an itinerant-electron antiferromagnet is studied, using a jellium model for the ions and a two-sub-band model for the itinerant electrons with an energy gap caused by the antiferromagnetic spin ordering. It is shown that the longitudinal sound velocity decreases with decreasing temperature, due to the electron-photon interaction. The exchange interaction between itinerant electrons is seen to play a particularly important role in the phonon softening phenomena for such a system; and although the model is a great simplification of reality it gives reason to believe that the observed elastic anomalies in the face-centred-cubic 3d transition metal alloys are directly related to their tendency towards antiferromagnetism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号