共查询到20条相似文献,搜索用时 0 毫秒
1.
宽视场大相对孔径航空高光谱成像仪已成为航空海洋水色遥感等领域的迫切需求,根据宽视场和大相对孔径的研究目标,采用离轴两镜消像散望远镜和改进型Offner光谱仪匹配的结构型式,设计了一个视场40°、相对孔径1/2.2、工作波段0.4~1.0μm的航空高光谱成像仪光学系统,在传统Offner光谱仪中插入同心弯月透镜来提高Offner光谱仪的相对孔径和成像质量.运用光学设计软件ZEMAX对高光谱成像仪光学系统进行了光线追迹和优化设计,并对设计结构进行了分析.结果表明:光学系统各个波长的光学传递函数在奈奎斯特频率28lp/mm处均达到0.67以上,谱线弯曲和谱带弯曲均小于6.5%像元,便于光谱和辐射定标,完全满足设计指标要求,且体积小、重量轻,适合航空遥感应用. 相似文献
2.
宽视场大相对孔径高光谱成像仪已成为航空海洋水色遥感等领域的应用需求。根据宽视场和大相对孔径的研究目标,采用离轴Schwarzschild望远成像系统和改进型Dyson光谱成像系统匹配的结构型式,设计了一个视场为40°、相对孔径为1/1.8、工作波段为0.35~1.05μm的航空遥感高光谱成像仪光学系统。基于像差理论,分析了改进型Dyson光谱成像系统球差校正原理,运用光学设计软件Zemax对高光谱成像仪光学系统进行了光线追迹和优化,并对设计结果进行了分析。分析结果表明,设计的光学系统在各个波长的光学传递函数均不小于0.82,谱线弯曲和谱带弯曲均小于像元尺寸的5%。这便于光谱和辐射定标,完全满足设计指标要求,且系统体积小、重量轻,适合于航空遥感应用。 相似文献
3.
设计了一种宽谱段、大视场、轻小型成像光学系统.系统焦距为35mm,相对孔径为1∶7.5,工作谱段为0.4~0.9μm,全视场为2ω=60°,采用复杂化双高斯结构,透镜面形均采用球面设计,实现系统总长115mm,在70lp/mm处,最低光学传递函数大于0.45.利用负畸变法、像差渐晕法改善广角系统像面照度均匀性,使像面边缘视场照度达到中心视场的80%.像面照度不均匀性为8%,系统热光学性能良好,在0~40℃范围内均有较好的像质,满足深空探测需求. 相似文献
4.
宽谱段光学系统消二级光谱的设计 总被引:1,自引:0,他引:1
利用修正的部分色散(P)和阿贝数(V)公式,计算一些典型的普通光学玻璃在450nm~950nm波段的色散特性,应用二级光谱理论,采用普通光学材料,设计了一个复消色差系统,分析近红外波段光学系统的二级光谱特性及校正方法,给出设计实例。设计结果表明:在可见光近红外波段,采用重冕玻璃ZK4、ZK8和特种火石玻璃TF3组合实现了二级光谱色差的校正,即从理论的0.18mm减少到0.084mm,证明该系统有较好的消色差能力,并且具有较长的后截距,为安装像移补偿反射镜提供了方便。 相似文献
5.
6.
多模式高光谱成像仪已成为空间大气遥感领域的迫切需求,根据多模式空间大气遥感的研究目标,采用扫描系统、离轴抛物面望远系统和双光谱仪级联色散光谱成像系统匹配的结构型式,设计了一个瞬时视场1.8°×0.045°、相对孔径1/2、工作波段250~500nm的星载天底-临边多模式高光谱成像仪光学系统,分成250~330nm和320~500nm两个波段同时探测,利用光学设计软件ZEMAX-EE中进行了光线追迹和优化设计,色散方向不同波长的点列图半径的均方根(RMS)值均小于9.5μm,在250~330nm波段,光谱分辨率为0.17nm,在320~500nm波段,光谱分辨率为0.37nm,均满足小于等于0.6nm的指标要求,高光谱成像仪全系统在空间方向各波长在特征频率处的光学传递函数均达到0.9以上,完全满足成像质量要求,适合空间大气遥感应用。 相似文献
7.
设计了由超大口径前置望远系统和超大视场光谱仪组成的超大口径高光谱海洋水色仪.前置望远系统采用同轴三反光学系统结构,口径为4 m,视场为0.64°,焦距为21.6 m,波段范围为400~1 000nm.超大视场光谱仪采用改进的Offner结构,视场为240mm,光谱分辨率为10nm.探测器像元尺寸为15μm×15μm,4片探测器交错拼接实现400km幅宽.超大视场光谱仪在400~1 000nm的宽波段内,点列图半径的均方根值均小于3.9μm,静止轨道高光谱海洋水色仪全系统不同波长的MTF在33.3lp/mm处大于0.52,各项指标均满足应用要求. 相似文献
8.
提出了一种将全景成像系统应用到大气临边探测的光学系统设计方案。首先考虑到特殊的工作波段以及创新性应用,根据应用技术指标,在传统全景环形透镜的基础上,结合探测器尺寸限制,精细调整四个球面的曲率半径,以便得到最佳光学传递函数。然后基于像差理论设计中继镜组系统,补偿全景环形透镜产生的像差,采用折射率n以及阿贝常数ν不同的双分离的正负透镜组合,负透镜采用熔石英,正透镜采用氟化钙,从而使色差最小。最后运用CODE-V光学设计软件对系统进行优化,列出重要的公差参数,为后续加工装调提出要求。优化结果表明,光学系统在各个视场的光学传递函数均达到了0.7以上,各视场能量集中度为80%的弥散圆直径均小于11 μm,完全满足设计指标要求,也证明了将全景环形成像系统应用到紫外波段大气临边探测的方案是可行的。 相似文献
9.
于磊徐明明陈结祥薛辉 《光子学报》2018,(11):102-109
根据水下环境主要监测要素的特征光谱分析了可采用的观测方法,并給出对应的高光谱成像仪光学系统性能参数;分别设计了望远镜和成像光谱系统并进行匹配,望远镜以双高斯透射式系统为原型,利用较少的光学材料种类完成像方远心优化;成像光谱系统基于Dyson系统,通过光程分析与透镜的添加实现了良好的光学性能,并保证了工程的可实施性.最终设计系统在350~700nm波段上实现了视场角为28°、F数为3、光谱分辨率为3.5nm、系统空间分辨率为1mrad的良好光学性能,设计搭建的原理样机性能测试验证了设计理论的正确性. 相似文献
10.
星载宽波段远紫外高光谱成像仪光学系统设计 总被引:1,自引:3,他引:1
根据高层大气遥感的应用要求,设计了一个全反射式的远紫外高光谱成像仪光学系统,该系统由扫描镜、离轴抛物面望远镜和超环面光栅光谱仪组成。提出了一种凹面超环面光栅光谱仪像差校正方法,根据凹面光栅的几何像差理论求解初始结构参数,然后利用光学设计软件Zemax进行优化,完成了超环面光栅光谱仪的设计,在工作波段内,点列图半径的方均根均小于16 μm,实现了宽波段像差同时校正,满足光谱分辨率0.6 nm的指标要求,也证明了提出的像差校正方法是可行的。运用光学设计软件Zemax对远紫外高光谱成像仪光学系统进行了光线追迹,并对设计结果进行了分析,分析结果表明,各波长的光学传递函数均达到0.8以上,完全满足设计指标要求,且结构紧凑,适合空间遥感应用。 相似文献
11.
为实现高光谱成像系统小型化、轻量化和高成像质量的要求,并使全工作波段具有更高的光学效率,提出以Féry棱镜组合作为分光元件的Dyson高光谱成像仪系统,系统中引入消色差棱镜组合以减小光谱的非线性色散,使棱镜系统色散的线性度达到较高。结果表明,可见近红外(VNIR)光谱通道的光学调制传递函数(MTF)达到0.9以上,光谱分辨率为4.2~6.8 nm。短波红外(SWIR)光谱通道的MTF达到0.73~0.87,光谱分辨率为6.4~12.5 nm。通过消色差Féry棱镜组合的设计,该光学成像系统两个光谱通道内的相对谱线弯曲均小于0.05%,色畸变小于0.13%。 相似文献
12.
13.
宽谱段红外光学系统可以获取宽谱段的图像信息并增大目标信息获取程度。从红外光学系统的简洁性出发,对红外光学系统进行设计,系统仅由4片球面透镜组成,实现了4.4 m~8.8 m波段清晰成像, F#为2.68,达到了100%的冷光阑效应。采用被动消热差方式通过合理选择镜片材料及公式推导最终实现了各个波段内的消热差,镜筒材料为钛合金,透镜采用硒化锌(ZnSe),锗(Ge)及硫化锌(ZnS)材料,给出20 lp/mm处系统在各个波段在-40 ℃~60 ℃的工作温度下的调制传递函数(MTF),以及各个波段下的光学系统畸变值。实验结果表明:设计的宽谱段红外光学系统结构简单,满足设计要求。 相似文献
14.
土壤光谱分析技术具有分析速度快、成本低、无危险、无破坏、可同时反演多种成分等特点,基于高光谱成像技术可以快速获取土壤性质及其空间分布特征。本文针对农田土壤监测的需求,设计了一种无人机载高光谱成像仪,选择Offner凸光栅光谱成像系统实现了无谱线弯曲和无色畸变的设计结果。400~1 000nm波长范围内的衍射效率为15%~30%,对地成像效果清晰,在3 km飞行高度可以获得覆盖宽度为0.6km、地面分辨率为0.6 m的地物目标高光谱图像,可提供0.4~1.0μm波长范围内120个谱段的高光谱图像,光谱数据准确、稳定。结果表明,该高光谱成像仪满足设计要求且可以快速获得高精度成像光谱信息,适合用于对农田土壤的监测。 相似文献
15.
16.
17.
近红外波段测星已成为星敏感器的重点发展方向之一,针对近红外星敏感器使用波段宽的特点,依据消二级光谱理论中可行的两种消二级光谱方法,采用选取相对部分色散系数相同或接近、色散系数相差较大的玻璃组合的方法对近红外星敏感器光学系统进行设计。设计了一组工作波长为900 nm ~1 700 nm,F数为1.5,焦距为150 mm的光学镜头,该镜头在宽光谱范围内实现了二级光谱的校正,在空间频率等于32 lp/mm时各视场MTF均大于0.65,使系统具有良好的像质,能够满足近红外波段的测星要求。 相似文献
18.
为了满足原子发射光谱仪在紫外至近红外宽谱段范围内的高光谱分辨率快速检测需求,采用精密角位移平台直接驱动光栅,配合面阵探测器,实现高精度光谱分段快速扫描探测。但在扫描过程中,探测器像元波长增量与光栅转角呈非线性关系,且不同像元的波长增量不同,这对该光谱仪波长定标造成障碍。为校正光栅色散的非线性,基于光栅方程精确计算光栅转角与探测器首尾两端像元波长的映射关系,针对同一光栅转角,探测器其余像元波长利用首尾像元波长按照局部线性色散规律计算得到,从而完成全谱段光谱定标。依据定标所得转角与探测波段对应关系依次驱动光栅转动,实现宽谱段范围内的分段高精度光谱快速扫描探测。利用汞灯光源对该定标方法的波长检测精度进行检验,在200~800 nm的宽谱段范围内,波长准确度优于0.018 nm,波长重复性优于0.001 nm。 相似文献
19.