首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在红光半导体激光器芯片上采用GaAs介质膜进行无杂质空位扩散诱导量子阱混杂研究。激光器芯片的有源区由一个9 nm厚的GaInP量子阱和两个350 nm厚的AlGaInP量子垒构成,利用MOCVD方法在芯片表面生长GaAs介质膜。在950℃的情况下进行不同时长不同GaAs层厚度的高温快速热退火诱发量子阱混杂。通过光致发光光谱分析样品混杂之后的波长蓝移情况和光谱半峰全宽变化规律。当退火时间达到120 s时,样品获得53.4 nm的最大波长蓝移;在1 min退火时间下获得18 nm的最小光谱半峰全宽。  相似文献   

2.
本文设计并制作了一种高效率、高可靠性的915 nm半导体激光器。半导体激光器是光纤激光器的关键部件,为了最大限度地提高器件的电光转换效率,在设计上采用双非对称大光腔波导结构,同时对量子阱结构、波导结构、掺杂以及器件结构进行了系统优化。器件模拟表明,在25℃环境温度下,器件的最高电光转换效率达到67%。采用金属有机气相沉积(MOCVD)法进行材料生长,随后制备了发光区域宽度为95μm、腔长为4.8 mm的激光芯片。测试表明,封装后器件的效率以及其它参数指标达到国际先进水平,在室温下阈值电流为1 A,斜率效率为1.18 W/A,最高电光转换效率达66.5%,输出功率12 W时,电光转换效率达到64.3%,测试结果与器件理论模拟高度吻合。经过约6 000 h的寿命加速测试,器件功率没有出现衰减,表明制作的高功率915 nm激光芯片具有很高的可靠性。  相似文献   

3.
为了提高852 nm半导体激光器的温度稳定性,理论计算了InGaAlAs、InGaAsP、InGaAs和GaAs量子阱的增益,模拟对比并研究了不同量子阱的增益峰值和峰值波长随温度的漂移。结果显示,采用In0.15Ga0.74-Al0.11As作为852 nm半导体激光器的量子阱可以使器件同时具有较高的增益峰值和良好的温度稳定性。使用金属有机化学气相沉积(MOCVD)外延生长了压应变In0.15Ga0.74Al0.11As单量子阱852 nm半导体激光器,实验测得波长随温度漂移的数值为0.256 nm/K,实验测试结果验证了理论计算结果。  相似文献   

4.
利用空间合束技术和光纤耦合技术将9只波长为915 nm单管芯半导体激光器高效率耦合进光纤中,制备出具有高功率、高亮度输出光纤耦合模块。应用ZEMAX光学软件进行模拟仿真后通过实验验证,光纤耦合模块可以通过芯径105μm、数值孔径0.22的光纤输出大于110 W的功率,并且亮度达到8.64 MW/(cm~2·sr)。  相似文献   

5.
本文介绍一种小型可见半导体激光器指示器,经实验,该指示器最大照射距离可达25m以上,束班直径小于2cm。  相似文献   

6.
808 nm InGaAsP-InP单量子阱激光器热特性研究   总被引:3,自引:2,他引:1  
从InGaAsP-InP单量子阱激光器结构分析入手,采用自行设计的热封闭系统对808 nm InGaAsP-InP单量子阱激光器热特性进行了研究.实验表明,在23-70℃的温度范围内,器件的功率由1.74 W降到0.51 W,斜率效率由1.08 W/A降到0.51 W/A.实验测得其特征温度T0为325 K.激射波长随温度的漂移dλ/dT为 0.44 nm/℃.其芯片的热阻为3.33℃/W.  相似文献   

7.
高输出功率和长期可靠性是高功率半导体激光器得以广泛应用的前提,但高功率密度下腔面退化导致的光学灾变损伤(COD)制约了激光器的最大输出功率和可靠性。为了提高915 nm InGaAsP/GaAsP半导体激光器的COD阈值,利用金属有机物化学气相沉积设备来外延生长初次样片。探讨了量子阱混杂对初次外延片发光的影响。此外,使用光致发光谱测量了波峰蓝移量和发光强度。实验结果表明,在退火温度为890℃、退火时间为10 min条件下,波峰蓝移量达到了62.5 nm。对初次外延片进行量子阱混杂可得到较大的波峰蓝移量,且在退火温度为800~890℃、退火时间为10 min的条件下峰值强度均保持在原样片峰值强度的75%以上。  相似文献   

8.
张晓丹  赵杰  王永晨  金鹏 《发光学报》2002,23(2):119-123
采用光荧光谱(PL)和光调制反射谱(PR)的方法,研究了由Si3N4、SiO2电介质盖层引起的无杂质空位(IFVD)诱导的InGaAsP四元化合物半导体多量子阱(MQWs)结构的带隙蓝移。实验中Si3N4、SiO2作为电介质盖层,用来产生空位,再经过快速热退火处理(RTA)。实验结果表明:多量子阱结构带隙蓝移和退火温度、复合盖层的组合有关。带隙蓝移随退火温度的升高而加大。InP、Si3N4复合盖层产生的带隙蓝移量大于InP、SiO2复合盖层。而InGaAs、SiO2复合盖层产生的带隙蓝移量则大于InGaAs、Si3N4复合盖层。同时,光调制反射谱的测试结果与光荧光测试的结果基本一致,因此,PR谱是用于测试带隙变化的另一种方法。  相似文献   

9.
从薛定谔方程出发推导了阶梯形有限深应变单量子阱中的特征值方程,研究了台阶宽度对激射波长、电子第一子能级、空穴第一子能级的影响以及空穴第一子能级对激射波长的影响,计算结果表明当有源区In组分较大时,不能忽略空穴第一子能级对激射波长的影响.该模型计算结果与实验值相吻合. 关键词: 薛定谔方程 有限深势阱 应变量子阱 特征值方程  相似文献   

10.
980nm半导体激光器输出光谱特性的改善   总被引:1,自引:0,他引:1  
陈少娟  李毅  袁文瑞  陈建坤  郑鸿柱  郝如龙  孙瑶  唐佳茵  刘飞 《光子学报》2015,44(1):114003-0114003
为了改善980nm半导体激光器的输出光谱特性,采用传输矩阵分析法推导了双布喇格光纤光栅谐振腔的传输表达式,对布喇格光纤光栅长度和谐振腔腔长对输出光谱的影响进行模拟仿真,结果表明布喇格光纤光栅长度对输出光谱的影响大于谐振腔腔长对输出光谱的影响,加长布喇格光纤光栅长度能压缩输出光谱线宽.在980nm半导体激光器尾纤上写入不同布喇格光纤光栅长度的双布喇格光纤光栅谐振腔,验证了引入双布喇格光纤光栅谐振腔在压缩980nm半导体激光器输出光谱线宽的同时改善了其输出光谱的稳定性.当环境温度在0~75℃范围内变化时,980nm半导体激光器输出中心波长仅变化0.06nm.  相似文献   

11.
通过金属有机化学气相淀积(MOCVD)和半导体后工艺技术制备了852 nm半导体激光器,它在室温下的阈值电流为57.5 m A,输出的光谱线宽小于1 nm。测试分析了激光器的输出光功率、阈值电流、电压、输出中心波长随温度的变化。测试结果表明,当温度变化范围为293~328 K时,阈值电流的变化速率为0.447m A/K,特征温度T0为142.25 K,输出的光功率变化率为0.63 m W/K。通过计算求得理想因子n为2.11,激光器热阻为77.7 K/W,中心波长漂移速率是0.249 29 nm/K,实验得出的中心波长漂移速率与理论计算结果相符。实验结果表明,该半导体器件在293~303 K的温度范围内,各特性参数能够保持相对良好的状态。器件如果工作在高温环境,需要添加控温设备以保证器件在良好状态下运行。  相似文献   

12.
报道了中心波长在674 nm的周期性电极窄条形单纵模半导体激光器。其制作工艺简单,仅使用i线光刻技术和普通的刻蚀技术制作的周期性沟槽与周期性电极结构即保证了器件工作在增益耦合机制下,进而实现单纵模激光输出。当注入电流为85 mA、测试温度18℃时,激光器的输出功率为2.603 mW。当注入电流为60 mA时,在不同测试温度下,器件均保持单纵模工作。当室温为16℃时,测得器件的光谱线宽可达到2.42 pm,边模抑制比为47 dB。由于该器件制作成本低,性能优良,可广泛应用于实际生产中。  相似文献   

13.
何林安  周坤  张亮  李弋  杜维川  胡耀  高松信  唐淳 《强激光与粒子束》2021,33(9):091001-1-091001-5
设计并制备了一款780 nm半导体激光器,并进行了外腔反馈锁模研究。利用金属有机化学气相沉积技术制备了激光器外延层,采用GaAsP/GaInP作为量子阱/波导层有源区,限制层采用低折射率AlGaInP材料。采用超高真空解理钝化技术,在激光器腔面蒸镀无定形ZnSe钝化层。未钝化器件在输出功率2.5 W时发生腔面灾变损伤(COD),钝化后器件未发生COD现象,电流在10 A时输出功率10.1 W,电光转换效率54%。体布拉格光栅(VBG)外腔锁定前后,器件的光谱半峰全宽分别为2.6 nm和0.06 nm,VBG变温调控波长范围约230 pm。  相似文献   

14.
采用多元芯片方法获得了一系列不同离子注入剂量的GaAsAlGaAs非对称耦合量子阱单元,通过光致荧光谱测量,研究了单纯的离子注入导致的界面混合效应.荧光光谱行为与有效质量理论计算研究表明,Al原子在异质结界面的扩散在离子注入过程中已基本完成,而热退火作用主要是去除无辐射复合中心. 关键词: 量子阱 离子注入 光致荧光谱 界面混合  相似文献   

15.
通过对半导体激光器发射光谱的计算可获得激光器的增益谱.本文研究了不同电流注入下激光器的增益特性;激光器的峰值增益系数Gmax在阈值电流以下随注入电流的增大而提高,也随结温的升高而下降.  相似文献   

16.
可调谐半导体激光吸收光谱作为一种高灵敏度、高选择性、非侵入的痕量气体实时检测技术,已在大气监测、工业控制等方面得到广泛应用。采用一种新型宽带可调谐的SG-DBR半导体激光器(可调谐范围1 520~1 570 nm)作光源,并通过自编程序对该激光器设定了18个通道,输出波长分别对应CO,CO2以及H2O的吸收谱线中心位置,设计和构建了一个基于近红外可调谐半导体激光吸收光谱的多组分气体光谱测量系统,描述了相关的光学系统设置,结合波长调制(wm)的二次谐波技术测量其中14个通道(分别对应CO和CO2的吸收谱线)的吸收光谱,系统获得的CO和CO2峰值吸收探测极限能够达到10-5。实验结果验证了SG-DBR激光器在波长调制吸收光谱多组分气体检测领域的可行性。在实际应用过程中使用单个SG-DBR激光器可以实现多组分气体的同时测量,有效降低设备成本和系统复杂性。  相似文献   

17.
采用一个光谱匹配的太赫兹(THz)量子阱探测器(QWP)研究了一激射频率约为41 THz的THz量子级联激光器(QCL)在不同驱动电流下的发射谱,分析了测量得到的发射谱谱型和谱峰位置,根据测量的发射谱估算了太赫兹量子级联激光器发射功率随驱动电流变化的情况,从而得到了THz QCL激射的电流密度范围及其阈值电流密度.文中还研究了THz QWP在不同温度下对THz QCL 激光辐射的响应特性.研究结果表明,THz QWP在表征THz QCL的发射谱方面是一种很好的探测器,并有望成为未来THz通信中的接收装置.  相似文献   

18.
采用一个光谱匹配的太赫兹(THz)量子阱探测器(QWP)研究了一激射频率约为41 THz的THz量子级联激光器(QCL)在不同驱动电流下的发射谱,分析了测量得到的发射谱谱型和谱峰位置,根据测量的发射谱估算了太赫兹量子级联激光器发射功率随驱动电流变化的情况,从而得到了THz QCL激射的电流密度范围及其阈值电流密度.文中还研究了THz QWP在不同温度下对THz QCL 激光辐射的响应特性.研究结果表明,THz QWP在表征THz QCL的发射谱方面是一种很好的探测器,并有望成为未来THz通信中的接收装置. 关键词: 太赫兹量子阱探测器 太赫兹量子级联激光器 太赫兹通信 Fourier变换红外光谱  相似文献   

19.
在(0001)蓝宝石衬底上分别用金属有机化学气相沉积技术外延生长了InGaN/GaN, InGaN/InGaN, InGaN/AlInGaN多量子阱激光器结构, 并分别制作了脊形波导GaN基激光器。同步辐射X射线衍射,电注入受激发射光谱测试及光功率-电流(L-I)测试证明,相对于GaN垒材料,InGaN垒材料,AlInGaN四元合金垒材料更能改善多量子阱的晶体质量,提高量子阱的量子效率及降低激光器阈值电流。相关的机制为:组分调节合适的四元合金垒层中Al的掺入使得量子阱势垒高度增加,阱区收集载流子的能力增强;In的掺入能更多地补偿应力,减少了由于缺陷和位错所产生的非辐射复合中心密度;In的掺入还减小了量子阱中应力引致的压电场,电子空穴波函数空间交叠得以加强,使得辐射复合增加。  相似文献   

20.
CdS/SiO_2半导体玻璃复合材料的低频Raman散射光谱研究王凯旋,隗罡,黄建滨,戴庆红,赵壁英,桂琳琳,谢有畅,唐有祺(北京大学物理化学研究所北京100871)AStudyofCdSSemieonductorinSilicaGlassesbyL...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号